Home About us Contact | |||
Macrophyte Species (macrophyte + species)
Terms modified by Macrophyte Species Selected AbstractsPalatability of macrophytes to the invasive freshwater snail Pomacea canaliculata: differential effects of multiple plant traitsFRESHWATER BIOLOGY, Issue 10 2010PAK KI WONG Summary 1.,By selective grazing, invasive grazers can alter macrophyte-herbivore relationships in shallow freshwater bodies. Evaluating the palatability of macrophytes and understanding the determinants of plant palatability can help predict grazing impact. In no-choice feeding assays, we tested the palatability of 21 species of freshwater macrophytes to the invasive freshwater apple snail Pomacea canaliculata. 2.,Daily feeding rate varied greatly with plant species, ranging from 1.1 to 22% of snail body mass. We assessed six plant properties and examined their correlation with feeding rate. Total nitrogen content was positively related, and C:N ratio and dry matter content (DMC) negatively related, to snail feeding rate. There was no significant correlation between snail feeding rate and plant phenolic content, but the feeding rate on Myriophyllum aquaticum (the plant with the highest phenolic content) was very low. 3.,We repeated the feeding assays for 15 species that were not palatable as fresh leaves with reconstituted plant tissues formed by mixing ground up dried leaves with agar. The feeding rate still differed greatly among macrophyte species. Phragmites australis and Vallisneria natans (two species with the highest DMC) were eaten much more as reconstituted plant than as fresh leaves, indicating that structure (i.e. DMC) may be important in their defence against snail herbivory. For two plants (M. aquaticum and Alternanthera philoxeroides) that had moderate amounts of nitrogen/phosphorus but were consumed very little as fresh and reconstituted tissues, we incorporated their extracts into a palatable agar-based food. The extracts from both species greatly reduced snail feeding rate, indicating the presence of chemical defences in these two species. 4.,These results indicated that feeding was affected by several plant traits. The snail favoured plants with a high nitrogen content and avoided plants with a high DMC. Only a few plants possessed chemical feeding deterrents that were effective against this snail. Given the invasive spread of P. canaliculata in Asia, ecologists and managers should consider plant palatability when selecting plants for use in wetland restoration and when predicting the impact of further invasion by this species. [source] Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophication-driven pathway from plants to plankton?FRESHWATER BIOLOGY, Issue 3 2010CARL D. SAYER Summary 1. Seasonal relationships between macrophyte and phytoplankton populations may alter considerably as lakes undergo eutrophication. Understanding of these changes may be key to the interpretation of ecological processes operating over longer (decadal-centennial) timescales. 2. We explore the seasonal dynamics of macrophytes (measured twice in June and August) and phytoplankton (measured monthly May,September) populations in 39 shallow lakes (29 in the U.K. and 10 in Denmark) covering broad gradients for nutrients and plant abundance. 3. Three site groups were identified based on macrophyte seasonality; 16 lakes where macrophyte abundance was perennially low and the water generally turbid (,turbid lakes'); 7 where macrophyte abundance was high in June but low in August (,crashing' lakes); and 12 where macrophyte abundance was high in both June and August (,stable' lakes). The seasonal behaviour of the crashing and turbid lakes was extremely similar with a consistent increase in nutrient concentrations and chlorophyll- a over May,September. By contrast in the stable lakes, seasonal changes were dampened with chlorophyll- a consistently low (<10,15 ,g L,1) over the entire summer. The crashing lakes were dominated by one or a combination of Potamogeton pusillus, Potamogeton pectinatus and Zannichellia palustris, whereas Ceratophyllum demersum and Chara spp. were more abundant in the stable lakes. 4. A long-term loss of macrophyte species diversity has occurred in many shallow lakes affected by eutrophication. One common pathway is from a species-rich plant community with charophytes to a species-poor community dominated by P. pusillus, P. pectinatus and Z. palustris. Such compositional changes may often be accompanied by a substantial reduction in the seasonal duration of plant dominance and a greater tendency for incursions by phytoplankton. We hypothesise a slow-enacting (10,100 s years) feedback loop in nutrient-enriched shallow lakes whereby increases in algal abundance are associated with losses of macrophyte species and hence different plant seasonal strategies. In turn such changes may favour increased phytoplankton production thus placing further pressure on remaining macrophytes. This study blurs the distinction between so-called turbid phytoplankton-dominated and clear plant-dominated shallow lakes and suggests that plant loss from them may be a gradual process. [source] Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plantsFRESHWATER BIOLOGY, Issue 4 2003Hiromi Taniguchi SUMMARY 1. The compound influence of habitat complexity and patch size on stream invertebrate assemblages associated with submerged macrophytes was investigated through field sampling of two natural macrophyte species with contrasting leaf morphologies (complex, Ranunculus yezoensis; simple, Sparganium emersum) and an experiment with two artificial plants with different levels of morphological complexity. 2. The artificial plant experiment was designed to separate the effects of habitat area (patch size) and habitat complexity, thus enabling a more rigorous assessment of complexity per se than in previous studies where only a single patch size was used. Simple and complex artificial plants were established with five different patch sizes corresponding to the range found in natural plants. 3. Invertebrates occurred on both complex and simple forms of natural and artificial plants at similar abundances with dipterans and ephemeropterans being predominant. Taxon richness was higher on structurally complex Ranunculus than on simple Sparganium and was similarly higher on the complex artificial plant than on the simple one, over the entire range of habitat patch sizes. Thus, architectural complexity affected the taxon richness of epiphytic invertebrates, independently of habitat scale. 4. On the natural plants there was no difference in the abundance (both number of individuals and biomass) of invertebrates between simple and complex forms, while on artificial plants more invertebrates occurred on complex than on simple forms. The amount of particulate organic matter, >225 ,m (POM) and chlorophyll a showed mixed patterns on natural and artificial plants, suggesting that the availability of these resources is not an overriding proximate factor controlling invertebrate abundance on plants. The difficulty of extrapolating from experimental results involving use of artificial plants is discussed, especially when considering the relationship between habitat structure and the occurrence of epiphytic invertebrates on natural plants. [source] Plant palatability and disturbance level in aquatic habitats: an experimental approach using the snail Lymnaea stagnalis (L.)FRESHWATER BIOLOGY, Issue 5 2002ARNAUD ELGER 1.,The palatability of aquatic macrophytes to the snail Lymnaea stagnalis was investigated in the laboratory. Eight species of macrophyte were selected from habitats that differed in either flood disturbance regime or nutrient status. 2.,In a non-choice test, single macrophyte species were offered to individual snails. The average amount of plant dry mass consumed per Lymnaea dry mass ranged from 3.6 ± 1.4 (±SE) to 63.6 ± 13.9 mg g,1 day,1 across plant species. In a choice test, all eight plant species were presented simultaneously to sets of five snails. The average total consumption was 66.1 ± 3.8 mg g,1 day,1 and the maximum average consumption for a single plant was 26.2 ± 3.6 mg g,1 day,1. 3.,In both tests, the amount consumed by snails differed significantly between the plant species. The species growing in undisturbed habitats were the least consumed. Habitat nutrient status was unrelated to plant palatability. 4.,These results suggest that macrophyte species growing in habitats that are rarely disturbed by floods allocate a greater proportion of their resources to resisting herbivory. [source] Leaf dry matter content as an integrative expression of plant palatability: the case of freshwater macrophytesFUNCTIONAL ECOLOGY, Issue 1 2003A. Elger Summary 1We examined the possibility of using the dry matter content (DMC) of macrophytes (the ratio of dry mass to wet mass) as an integrative variable to predict their palatability to generalist invertebrate grazers. 2We assessed the palatability of 20 macrophyte species, using the snail Lymnaea stagnalis (L.) in non-choice feeding experiments. Three of the species were studied at two different dates in the year, at two or four sites. 3The average dry mass consumed by L. stagnalis ranged widely between species, and was negatively correlated to plant DMC. At the intraspecific level, the dry mass consumed varied over time but was not related to site location. Again, the dry mass consumed was negatively correlated to plant DMC. 4The DMC of the macrophytes studied explained about 30% of interspecific variability, and >80% of seasonal variability, in snail consumption rate. Therefore this trait could be used as a shortcut to predict variations in macrophyte palatability, especially at the intraspecific level. At the interspecific level, the relationship between DMC and palatability might be weakened by the presence in some plants of low molecular weight chemical deterrents. [source] Growth and physiological acclimation to temperature and inorganic carbon availability by two submerged aquatic macrophyte species, Callitriche cophocarpa and Elodea canadensisFUNCTIONAL ECOLOGY, Issue 2 2000B. Olesen Abstract 1.,Interactive effects of temperature and inorganic carbon availability on photosynthetic acclimation and growth of two submerged macrophyte species, Elodea canadensis and Callitriche cophocarpa, were examined to test the hypotheses that: (1) effects of temperature on growth rate and photosynthetic acclimation are suppressed under low inorganic carbon availability; (2) the plants compensate for the reduction in activity of individual enzymes at lower temperatures by increasing the activity per unit plant mass, here exemplified by Rubisco. The experiments were performed in the laboratory where plants were grown in a factorial combination of three temperatures (7,25 °C) and three inorganic carbon regimes. 2.,The relative growth rate of both species was strongly affected by growth conditions and increased by up to 4·5 times with increased temperature and inorganic carbon availability. The sensitivity to inorganic carbon was greatest at high temperature and the sensitivity to temperature greatest at high carbon concentrations. 3.,Photosynthetic acclimation occurred in response to growth conditions for both species. The affinity for inorganic carbon and the photosynthetic capacity, both measured at 15 °C, increased with reduced inorganic carbon availability during growth and were greater at warmer than at cooler growth temperature. The acclimative change in photosynthesis was related to the extent of temperature and inorganic carbon stress. Using data for Elodea, a negative relationship between degree of temperature stress and photosynthetic performance was found. In relation to inorganic carbon, a linear increase in CO2 affinity and photosynthetic capacity was found with increased inorganic carbon stress during growth. 4.,The total Rubisco activity declined with increased inorganic carbon availability during growth and with enhanced growth temperature. In addition, the activation state of Rubisco was higher at cooler than at warmer temperatures for Callitriche. This suggests that low-temperature grown plants compensate for the temperature-dependent reduction in activity of the individual Rubisco molecules by enhancing resource allocations towards Rubisco. [source] Methane efflux in relation to plant biomass and sediment characteristics in stands of three common emergent macrophytes in boreal mesoeutrophic lakesGLOBAL CHANGE BIOLOGY, Issue 1 2005Paula Kankaala Abstract Methane efflux was studied in stands of three emergent macrophyte species (Equisetum fluviatile, Schoenoplectus lacustris and Phragmites australis) commonly found in the littoral zone of boreal lakes. In vegetation stands with relatively low methane (CH4) emissions (<0.3 mol m,2 (ice-free period),1), the seasonal variation of CH4 efflux was better correlated with the dynamics of plant growth than variation in sediment temperature. In dense and productive vegetation stands that released high amounts of CH4 (2.3,7.7 mol m,2 (ice-free period),1), the seasonal variation in CH4 efflux was correlated with sediment temperature, indicating that methanogens were more limited by temperature than substrate supply. The bottom type at the growth site of the emergent plants significantly influenced the ratio of CH4 efflux to aboveground biomass of plants (Eff : B). The lowest Eff : B ratio was found in E. fluviatile stands growing on sand bottom under experimental conditions and the highest in P. australis -dominated littoral areas accumulating detritus from external sources. The future changes expected in the hydrology of boreal lakes and rivers because of climatic warming may impact the growth conditions of aquatic macrophytes as well as decomposition and accumulation of detritus and, thus, CH4 effluxes from boreal lakes. [source] Morphological and Chemical Changes Induced by Herbivory in Three Common Aquatic MacrophytesINTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 3 2009Damien G. Lemoine Abstract The Dry Matter Content (DMC), the total phenolic content, the production of new branches and the plant fragmentation were compared in three macrophyte species (Elodea canadensis, Elodea nuttallii and Myriophyllum spicatum) exposed or not to snail herbivory. Grazing significantly reduced the DMC of M. spicatum and E. canadensis, but had no effect on the DMC of E. nuttallii. The phenolic contents of Elodea species were not modified by snail herbivory, whereas that of M. spicatum significantly increased when exposed to grazers. The number of new branches produced by M. spicatum and E. canadensis plants, and the fragmentation of E. canadensis also increased in response to herbivory. Chemical defences are therefore probably constitutive in Elodea and induced in M. spicatum, and morphological changes can be related to species growth form and synthesis of phenolic compounds. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Influence of Emergent and Submerged Macrophytes on the Structure of Planktonic Ciliate Communities in Shallow Freshwater Lakes (Eastern Poland)INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 3 2008Tomasz Mieczan Abstract Data from two shallow macrophyte-dominated lakes (Eastern Poland) sampled with standardized methods, were evaluated in order to examine the effects of various stands of macrophytes in predicting protozooplankton community structure. Differences in macrophyte structure led to two distinct groups of habitats having different patterns of ciliate distribution. The first group consists of two vegetated habitats of sparse stem density and of the open water zone, and the second of submerged macrophyte species, which were more dense and complex. The number of significant correlations was different in the studied habitats. In central zones of macrophyte habitats the number of ciliates had the strongest correlation with concentrations of total organic carbon and Ptot. On the other side in the border zone a significant correlation between the number of ciliates and the chlorophyll a concentration was found. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Macrophyte species diversity in formerly cultivated wetlands in UgandaAFRICAN JOURNAL OF ECOLOGY, Issue 4 2008Josephine Esaete Abstract The diversity of major macrophytes was assessed in cultivated areas in Bukasa and Kinawataka wetlands in Central Uganda. One thousand and seventy-two plots of 1 × 1 m were established in 69 cultivated areas. Data were collected on species richness and abundance. Two-way analysis of covariance (ANCOVA) showed how cropping regimes affected macrophyte species richness and abundance. There were 127 plant species belonging to 37 families in cultivated areas. Of the 127 species, 42 were macrophytes and of the 37 families, fourteen contained macrophyte species. Plant species diversity was higher in the short-term cropping regime areas (11.3 species per 1 m2) than in the long-term cropping regime areas (9.3 species per 1 m2). However, macrophyte species richness was similar in the short-term (3.2 species per 1 m2) and the long-term (3.3 species per 1 m2) cropping regimes. The dominant families were Poaceae, Asteraceae and Cyperaceae with more than ten species each. The higher plant species diversity in cultivated areas than in uncultivated was because of nonmacrophyte species, thus cropping regime does not influence macrophyte species diversity. Increase in diversity of nonmacrophyte species in short-term cropping regime implies that the use of wetlands for agricultural crop growing may alter plant species composition and diversity during secondary succession. Résumé La diversité des principaux macrophytes a étéévaluée dans les régions cultivées des zones humides de Bukasa et de Kinawataka, au centre de l'Ouganda. On a établi 1072 plots d'1x1m, dans 69 zones cultivées. On a récolté des données sur la richesse et l'abondance des espèces. Une analyse de la covariance à deux voies (ANCOVA) a montré comment les régimes agricoles affectaient la richesse et l'abondance des espèces de macrophytes. Il y avait 127 espèces végétales appartenant à 37 familles dans les zones cultivées. De ces 127 espèces, 42 étaient des macrophytes, et des 37 familles, 14 comprenaient des espèces de macrophytes. La diversité des espèces végétales était plus élevée dans les surfaces subissant un régime cultural court (11,3 espèces/m2) que dans les surfaces soumises à un régime de culture plus long (9,3 espèces/m2). Cependant, la richesse en espèces de macrophytes était comparable pour le régime court (3,2 espèces/m2) et pour le plus long (3,3 espèces/m2). Les familles dominantes étaient les Poaceae, les Asteraceae et les Cyperaceae, qui comptaient chacune plus de 10 espèces. La diversité spécifique plus grande observée dans les aires cultivées était due aux espèces non macrophytes, et on peut donc dire que le régime de culture n'influence pas la diversité des espèces de macrophytes. L'augmentation de la diversité des espèces non macrophytes dans les cultures à régime court implique que l'utilisation des zones humides pour l'agriculture peut altérer par la suite la composition et la diversité des espèces végétales. [source] Experiments on growth interactions between two invasive macrophyte speciesJOURNAL OF VEGETATION SCIENCE, Issue 1 2004Marie-Hélène Barrat-Segretain Tutin et al. (1980) Abstract. The success of invasive species has been attributed to the ability to displace other species by direct competition. We studied growth and possible competition between the two macrophyte species Elodea nuttallii and E. canadensis, because the former has been observed to replace the latter in the field. Additional experiments were conducted in aquaria with mixed plantings of Elodea species. Species growth was measured and competitive abilities of each species determined by applying the reciprocal yield model to mean plant weight and length. In monocultures the growth rates of the two species were similar, while in mixtures the growth rate of E. canadensis was significantly lower than that of E. nuttallii. E. canadensis was more sensitive to intraspecific than to interspecific neighbours, whereas E. nuttallii was indifferent to the presence of neighbours. Differential growth characteristics of Elodea species can explain the displacement of E. canadensis by E. nuttallii under eutrophic field conditions. [source] Does flooding of rice fields after cultivation contribute to wetland plant conservation in southern Brazil?APPLIED VEGETATION SCIENCE, Issue 1 2010Ana S. Rolon Abstract Question: Does flooding of rice fields after cultivation contribute to wetland plant conservation in southern Brazil? Location: Rice fields in the coastal plain of southern Brazil. Methods: Six rice fields with different management practices were randomly selected (three dry rice fields and three flooded rice fields). Six collections were carried out over the rice cultivation cycle. Richness and biomass were measured using the quadrat method. Results: A total of 88 macrophyte species was recorded. There was no statistical interaction between management practices and rice cultivation phases for macrophyte richness and biomass. Macrophyte species richness and biomass changed over time, but were similar between flooded and dry rice fields. The first three axes generated by detrended correspondence analysis explained 29% of the variation in species composition and the multivariate analysis of variance showed that there was a statistical interaction between management practices and agricultural periods. Conclusions: Rice fields may help to conserve an important fraction of the aquatic macrophyte diversity of wetlands of southern Brazil by providing the setting up of a greater number of species within the agricultural landscape. However, rice fields must not be viewed as surrogate systems for natural wetlands. The difference in species composition between flooded and dry rice fields is interesting in terms of biodiversity conservation. If rice producers could keep part of their agricultural land flooded during the fallow phase, this management practice could be an important strategy for the conservation of biodiversity in areas where natural wetlands have been converted to rice fields. [source] Experimental herbivory of native Australian macrophytes by the introduced Mozambique tilapia Oreochromis mossambicusAUSTRAL ECOLOGY, Issue 1 2010ROBERT G. DOUPÉ Abstract This study describes experimental herbivory and detritivory of three common native aquatic macrophyte species by the introduced Mozambique tilapia Oreochromis mossambicus (Peters) (Pisces: Cichlidae), and its physiological response to their consumption. There was a highly significant effect of fish herbivory on plant weight for each of the macrophyte species, but this effect was not influenced by any preference for periphyton. Despite the herbivory, there was a highly significant loss of fish body weight across all plant species and weight could only be maintained by supplementary feeding of a high protein fish flake. These results suggest that despite eating these plants, an alternative food resource may be needed for survival and may trigger trophic plasticity in O. mossambicus. [source] |