Macrophages Isolated (macrophage + isolated)

Distribution by Scientific Domains


Selected Abstracts


NTPDase1 governs P2X7 -dependent functions in murine macrophages

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2010
Sébastien A. Lévesque
Abstract P2X7 receptor is an adenosine triphosphate (ATP)-gated ion channel within the multiprotein inflammasome complex. Until now, little is known about regulation of P2X7 effector functions in macrophages. In this study, we show that nucleoside triphosphate diphosphohydrolase 1 (NTPDase1)/CD39 is the dominant ectonucleotidase expressed by murine peritoneal macrophages and that it regulates P2X7 -dependent responses in these cells. Macrophages isolated from NTPDase1-null mice (Entpd1,/,) were devoid of all ADPase and most ATPase activities when compared with WT macrophages (Entpd1+/+). Entpd1,/, macrophages exposed to millimolar concentrations of ATP were more susceptible to cell death, released more IL-1, and IL-18 after TLR2 or TLR4 priming, and incorporated the fluorescent dye Yo-Pro-1 more efficiently (suggestive of increased pore formation) than Entpd1+/+ cells. Consistent with these observations, NTPDase1 regulated P2X7 -associated IL-1, release after synthesis, and this process occurred independently of, and prior to, cytokine maturation by caspase-1. NTPDase1 also inhibited IL-1, release in vivo in the air pouch inflammatory model. Exudates of LPS-injected Entpd1,/, mice had significantly higher IL-1, levels when compared with Entpd1+/+ mice. Altogether, our studies suggest that NTPDase1/CD39 plays a key role in the control of P2X7 -dependent macrophage responses. [source]


The chemokine receptor CCR6 is an important component of the innate immune response

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 9 2007
Haitao Wen
Abstract In our initial studies we found that naïve CCR6-deficient (CCR6,/,) C57BL/6 mice possessed significantly lower number of both F4/80+ macrophages and dendritic cells (DC), but higher number of B cells in the peritoneal cavity, as compared to naïve wild type (WT) controls. Furthermore, peritoneal macrophages isolated from CCR6,/, mice expressed significantly lower levels of inflammatory cytokines and nitric oxide following lipopolysaccharide (LPS)stimulation, as compared to WT macrophages. In a severe experimental peritonitis model induced by cecal ligation and puncture (CLP), CCR6,/, mice were protected when compared with WT controls. At 24,h following the induction of peritonitis, CCR6,/, mice exhibited significantly lower levels of inflammatory cytokines/chemokines in both the peritoneal cavity and blood. Interestingly, DC recruitment into the peritoneal cavity was impaired in CCR6,/, mice during the evolution of CLP-induced peritonitis. Peritoneal macrophages isolated from surviving CCR6,/, mice 3,days after CLP-induced peritonitis exhibited an enhanced LPS response compared with similarly treated WT peritoneal macrophages. These data illustrate that CCR6 deficiency alters the innate response via attenuating the hyperactive local and systemic inflammatory response during CLP-induced peritonitis. [source]


Schistosomiasis delays lesion resolution during Leishmania major infection by impairing parasite killing by macrophages

PARASITE IMMUNOLOGY, Issue 7 2002
Anne Camille La Flamme
Summary Infection of mice with Schistosoma mansoni delays the resolution of cutaneous lesions and parasitaemia during Leishmania major infection. In contrast, L. major infection does not appear to alter the course of schistosomiasis. Analysis of the cytokine responses in the draining lymph nodes (LN) indicates that, while L. major infection had no effect on schistosome-specific interleukin (IL)-4 production by mesenteric LN (MLN) cells, coinfection with S. mansoni resulted in decreased leishmania-induced interferon (IFN)-,, tumour necrosis factor-, and nitric oxide production by popliteal LN (PLN) cells 4 weeks after L. major infection. In addition, PLN cells produced higher levels of IL-4 4 weeks after L. major infection in coinfected mice. Finally, IFN-,-stimulated macrophages isolated from S. mansoni -infected mice were impaired in their ability to kill L. major after in vitro infection. These results suggest that pre-existence of a strong Th2 response-dominated infection can alter the responses to Th1-inducing pathogens at peripheral sites and impair Th1-mediated effector functions. [source]


Downregulation of CD36 results in reduced phagocytic ability of peritoneal macrophages of women with endometriosis,

THE JOURNAL OF PATHOLOGY, Issue 2 2009
Pei-Chin Chuang
Abstract Endometriosis, defined as the growth of endometrial tissues outside of the uterine cavity, is a severe and complex disease affecting more than 10% of women. The aetiology of endometriosis is unclear but immune dysfunction might be an important factor for its development. The natural function of the immune system is to detect and destroy aberrant or abnormal cells. Failure of the immune system to eradicate these aberrant cells often results in disease pathogenesis. We report here that the phagocytic ability of macrophages is reduced in peritoneal macrophages isolated from women with endometriosis. In-depth investigation revealed that the level of CD36, a class B scavenger receptor, in peritoneal macrophages derived from women with endometriosis was lower than that in normal macrophages. Blockage of CD36 function by neutralized antibody or knocking down CD36 using siRNA impaired the phagocytic ability of normal macrophages. In contrast, forced expression of CD36 in macrophages isolated from women with endometriosis restored phagocytic ability. Taken together, we identified that the scavenger receptor CD36 is reduced in the peritoneal macrophages of women with endometriosis, which leads to a decrease of the phagocytic ability of macrophages. These findings revealed a potential mechanism of immune dysfunction during endometriosis development. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


Long,term culture of multibacillary leprosy macrophages isolated from skin lesions: a new model to study Mycobacterium leprae,human cell interaction

BRITISH JOURNAL OF DERMATOLOGY, Issue 2 2007
D.F. Moura
Summary Background, Leprosy is characterized by a disease spectrum having two polar clinical forms dependent on the presence or not of cell-mediated immunity. In the tuberculoid forms, granuloma-activated macrophages kill Mycobacterium leprae in conjunction with a Th1 response while, in multibacillary (MB) lesions, M. leprae nonactivated macrophages infiltrate the nerves and internal organs together with a Th2 response. The functional properties and activation pathways of macrophages isolated from patients with MB leprosy remain only partially understood. Objectives, To establish an ex vivo methodology capable of evaluating the activation pathways, grade and fate of cultured macrophages isolated from MB lesions. Methods, Skin biopsies from patients with borderline tuberculoid, bordeline lepromatous and lepromatous leprosy (LL) were characterized by immunohistochemistry and transcriptional analysis. To isolate inflammatory cells, a portion of the samples was submitted to enzymatic digestion. These same cells, maintained in culture for a minimum 7-day period, were characterized morphologically and via flow cytometry at different culture time points. Cytokine [interferon (IFN)-,, tumour necrosis factor (TNF)-, and interleukin (IL)-10] mRNA levels were quantified by real-time polymerase chain reaction and protein secretion in the culture supernatants was measured by enzyme-linked immunosorbent assay and the nitric oxide levels by Griess reagent. Results, RNA expression in tuberculoid and MB lesions showed the profile expected of characteristic Th1 and Th2 responses, respectively. The inflammatory cells in all biopsies were successfully isolated. Although the number of cells varied between biopsies, it was highest in LL biopsies. The frequency of isolated CD14+ and CD3+ cells measured by flow cytometry correlated with the percentages of macrophages and lymphocytes in the lesions. Throughout the culture period, CD68+ macrophages showed morphological changes. A progressive increase in cell number and reduction of infected cells were perceptible in the cultures. In contrast to the biopsies, TNF-,, IFN-, and IL-10 expression in the tuberculoid and MB leprosy cells in 24-h culture and the cytokine levels in the supernatants did not differ significantly. During the culture period, cytokine expression in the MB cells progressively declined, whereas, from days 1 to 7, nitrite levels progressively increased. After day 40, the remaining macrophages were able to ingest fluorescein isothiocyanate-labelled M. leprae. These data need to be confirmed. Conclusions, This study confirmed the feasibility of obtaining ex vivo macrophages from leprosy lesions and keeping them in long-term culture. This procedure may open new pathways to studying the interaction between M. leprae and human macrophages, which might, in turn, lead to the development of therapeutic tools capable of overcoming the specific anergy found in patients with MB leprosy. [source]


In vitro effects of cefotaxime and ceftriaxone on Salmonella typhi within human monocyte-derived macrophages

CLINICAL MICROBIOLOGY AND INFECTION, Issue 12 2002
B. Ekinci
The main objective of this in vitro study was to assess the effects of cefotaxime and ceftriaxone in killing Salmonella typhi in infected human macrophages. Human monocyte-derived macrophages isolated from peripheral blood of human volunteers were cultured in vitro for macrophage differentiation, and subsequently infected with S. typhi strains (a clinical isolate and a standard strain TA-42) at a cell ratio of 10 : 1. MICs of cefotaxime and ceftriaxone were determined by broth microdilution, and the antibiotics were included in the culture medium at one and five times their MIC values. Samples of cell culture medium taken at 0, 3, 6 and 24 h of incubation were cultured for growth of S. typhi on nutrient agar. Gentamicin (10 mg/L) was included in each well except for the control wells, in order to prevent growth of extracellular S. typhi. Both antibiotics showed good in vitro antibacterial effects against S. typhi strains. There were no statistically significant differences between the extracellular and intracellular effects of antibiotics with regard to elimination of the bacteria. Cefotaxime and ceftriaxone are highly effective against extracellular bacterial growth. The results of our in vitro experiments suggest that cefotaxime and ceftriaxone might also be used clinically against susceptible intracellular pathogens such as S. typhi. [source]