Macronutrient Content (macronutrient + content)

Distribution by Scientific Domains


Selected Abstracts


Impact of organic and inorganic fertilizers on yield, taste, and nutritional quality of tomatoes

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2006
Anuschka Heeb
Abstract In a greenhouse experiment, tomato plants were grown in sand culture to test whether different fertilization regimes (mineral or organic fertilizers) at low (500 mg N plant,1 week,1) and high (750 mg N plant,1 week,1) nitrogen levels affected yield, nutritional quality, and taste of the fruits. In the mineral-fertilizer treatments, nitrate- or ammonium-dominated nutrient solutions were used. Organic fertilizer was supplied as fresh cut grass-clover mulch (a total of 2.4,kg and 3.6,kg were given per plant at low and high N level, respectively) without (orgN) and with additional sulfur fertilization (orgN+S). Yields of red tomatoes from the organically fertilized plants were significantly lower (1.3,1.8,kg plant,1) than yields from plants that received mineral fertilizer (2.2,2.8,kg plant,1). At the final harvest, yields of green tomatoes in the organic treatment with extra sulfur were similar (1.1,1.2,kg plant,1) to the NO -dominated treatments at both nutrient levels and the NH -dominated treatment at high nutrient level. Organic fertilizers released nutrients more slowly than mineral fertilizers, resulting in decreased S and P concentrations in the leaves, which limited growth and yield in the orgN treatments. Analysis of tomato fruits and plants as well as taste-test results gave no conclusive answer on the relationship between sugar or acid contents in the fruits, macronutrient content of plant leaves and fruits, and perceived taste. Sugar contents were higher in the fruits given mineral fertilizer, whereas acid contents were higher in the fruits given organic fertilizer. Preference in taste was given to the tomatoes from plants fertilized with the nitrate-dominated nutrient solution and to those given organic fertilizer with extra sulfur. Thus, a reduction in growth, which was expected to lead to a higher concentration of compounds like sugars and acids, did not result in better taste. Overall, it can be concluded that an appropriate nutrient supply is crucial to reach high yields and good taste. [source]


The effects of nutritional imbalance on compensatory feeding for cellulose-mediated dietary dilution in a generalist caterpillar

PHYSIOLOGICAL ENTOMOLOGY, Issue 2 2004
Kwang Pum Lee
Abstract. The interactive effects of macronutrient balance [protein (P) : carbohydrate (C) ratio] and dietary dilution by cellulose on nutritional regulation and performance were investigated in the generalist caterpillar Spodoptera littoralis (Boisduval). Caterpillars were reared through the final stadium on one of 20 foods varying factorially in macronutrient content (P + C%: 42, 33.6. 25.2 or 16.8%) and P : C ratio (5 : 1, 2 : 1, 1 : 1, 1 : 2 or 1 : 5). The animals compensate by eating more of diluted foods, but suffer reduced nutrient intake in proportion to the degree of dilution. Increase in food intake with dilution is greater on balanced than imbalanced foods and this is reflected in greater reduction of dry pupal mass with dilution in the latter. Whereas dilution results in a reduction in the amount of whichever macronutrient is in excess in the food, by contrast, the ability to compensate for the deficient macronutrient in the food is unaffected by nutrient imbalance. Excess protein intake due to nutritional imbalance (diets with high P : C ratios) results in a regulatory decrease in the efficiency of retention of ingested nitrogen relative to restricted protein intake on oppositely imbalanced foods (low P : C ratios). By contrast, decreased protein intake due to dietary dilution is associated with a non-regulatory reduction in the efficiency of retention, irrespective of P : C ratio. Dilution is similarly associated with reduced utilization efficiency of ingested carbohydrate. The ecological implications of these results are discussed. [source]


Plant foods consumed by Pan: Exploring the variation of nutritional ecology across Africa

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2010
Gottfried Hohmann
Abstract It has been shown that differences in resource density and nutrient supply affect variation in ranging patterns, habitat use, and sociality. Among nonhuman primates, chimpanzees (Pan troglodytes) and bonobos (P. paniscus) have often been used as models for the link between social system and habitat ecology. Field reports suggest that resource density is higher in habitats occupied by bonobos (compared to chimpanzee habitats), and in the West (compared to the East) of the range of chimpanzees. In this study we compared diet quality at the level of species and populations using information from nutritional analyses of fruit and leaves consumed by chimpanzees (three) and bonobos (one population). Quality of plant foods was assessed on the basis of a) the concentration of macronutrients, fiber, and anti-feedants, and b) associations of different nutrient components. Overall plant samples collected at each site differed in terms of macronutrient content. However, nutritious quality and gross energy content of food samples were similar suggesting that dietary quality reflects selectivity rather than habitat ecology. The quality of plant foods consumed by bonobos was within the range of chimpanzees and the quality of plant foods consumed by western chimpanzees was not higher than that of eastern chimpanzees. While the results showed significant variation across forests inhabited by Pan, they did not match with geographical patterns between and within Pan species as proposed in previous studies. This suggests that the nutritional quality of the habitat is not always a reliable predictor of the quality of the diet. Am J Phys Anthropol 2010. © 2009 Wiley-Liss, Inc. [source]


Effect of organic fertilisers on the greening quality, shoot and root growth, and shoot nutrient and alkaloid contents of turf-type endophytic tall fescue, Festuca arundinacea

ANNALS OF APPLIED BIOLOGY, Issue 1 2010
Z. Cheng
Increasing concern about the potential negative environmental impact of chemical fertilisers used in urban landscapes has provided impetus to develop organic fertilisers. However, little is known about the effect of organic fertilisers on turfgrass quality, growth and stress resistance. This study compared the effect of 11 organic fertilisers, applied at manufacturer's recommended rates, on greening quality, shoot and root growth, and shoot nutrient (an indication of nutrient uptake) and alkaloid content (an indication of insect resistance) in endophytic (infected with the fungus Neotyphodium coenophialum) tall fescue in the greenhouse. We measured turfgrass greening quality on a 1,9 scale weekly (9 being the highest), shoot and root growth monthly, and shoot contents of macro- and micronutrients and of various alkaloids at the end of 4 months. The results show that Corn Gluten and Cockadoodle Doo produce the highest turfgrass greening quality and shoot growth. Nature's Touch with enzymes enhanced root growth, and thus resulted in high root:shoot ratio, especially in third and fourth months after application. Compared with the most commonly used chemical fertiliser, Scott's Turf Builder, the organic fertilisers Cockadoodle Doo, Corn Gluten and Nature's Touch with enzymes generally resulted in better turf greening quality. Although Cockadoodle Doo, Vigoro and Scott's Turf Builder resulted in higher macronutrient contents in turfgrass shoots, there was no significant correlation between the nutrient contents in the fertilisers and in the shoots four months after application. Significant differences were found for all measured alkaloids in turfgrass shoots among the 13 treatments, and these differences varied with fertiliser. Overall, organic fertilisers produced higher turfgrass greening quality, root and shoot growth and insect resistance capacity (alkaloid content) compared with the chemical fertiliser, Scott's Turf Builder. On the basis of the high to excellent turfgrass greening quality ratings, root:shoot ratio, shoot nutrient and alkaloid contents in this study, we conclude that Cockadoodle Doo, Vigoro and Nature's Touch with enzymes are relatively superior organic fertilisers. [source]