Macromolecules

Distribution by Scientific Domains
Distribution within Chemistry

Kinds of Macromolecules

  • biological macromolecule
  • dendritic macromolecule
  • other macromolecule
  • synthetic macromolecule


  • Selected Abstracts


    Metals and oxidative homeostasis in Alzheimer's disease

    DRUG DEVELOPMENT RESEARCH, Issue 3 2002
    George Perry
    Abstract Oxidative damage to every class of biological macromolecule has been characterized in Alzheimer's disease. Abnormalities in iron and copper metabolism are also being implicated as playing a crucial role in neurodegenerative disease pathogenesis. Metal homeostasis as it pertains to alterations in brain function in neurodegenerative diseases is reviewed here with its relationship to oxidative stress. While there is documented evidence for alterations in transition metal homeostasis, redox-activity, and localization, it is also important to realize that alterations in specific copper- and iron-containing metalloenzymes also contribute to the neurodegenerative process. These changes offer the opportunity to identify pathways where modification of the disease process can offer new routes for clinical efficacy, from gene therapy to use of antioxidant and chelating drugs. Drug Dev. Res. 56:293,299, 2002. © 2002 Wiley-Liss, Inc. [source]


    Photopolymerizable Hydrogels Made from Polymer-Conjugated Albumin for Affinity-Based Drug Delivery,

    ADVANCED ENGINEERING MATERIALS, Issue 1-2 2010
    Liat Oss-Ronen
    As a drug delivery vehicle, biodegradable albumin hydrogels can combine the high binding capacity of albumin with the structural stability of a polymeric hydrogel network to enable controlled release of small molecules based on both binding affinity and physical interactions. In the present study, we report on the development of a hybrid hydrogel composed of albumin conjugated to poly(ethylene glycol) (PEG) for drug delivery applications where controlled release is accomplished using the natural affinity of the drugs to the serum albumin. Bovine serum albumin was conjugated to PEG-diacrylate having a molecular weight of 1.5, 4, or 10,kDa to form a PEGylated albumin macromolecule (mono-PEGylated or multi-PEGylated). Biodegradable hydrogels were formed from the PEGylated albumin using photopolymerization. Two model drugs, Warfarin and Naproxen, were used for equilibrium dialysis and release experiments from the hydrogels, both having relatively low molecular weights and a known high affinity for albumin. Equilibrium dialysis experiments showed that multi-PEGylation of albumin significantly decreased the drug affinity to the protein compared to non-PEGylated controls, irrespective of the PEG molecular weight. However, the results from drug release experiments showed that mono-PEGylation of albumin did not change its natural affinity to the drug. Comparing the release profiles with a Fickian diffusion model provided strong evidence that hydrogels containing mono-PEGylated albumin exhibited sub-diffusive drug release properties based on the affinity of the drug to the tethered protein. [source]


    Molecular mass of macromolecules and subunits and the quaternary structure of hemoglobin from the microcrustacean Daphnia magna

    FEBS JOURNAL, Issue 14 2006
    Tobias Lamkemeyer
    The molecular masses of macromolecules and subunits of the extracellular hemoglobin from the fresh-water crustacean Daphnia magna were determined by analytical ultracentrifugation, multiangle laser light scattering and electrospray ionization mass spectrometry. The hemoglobins from hypoxia-incubated, hemoglobin-rich and normoxia-incubated, hemoglobin-poor Daphnia magna were analyzed separately. The sedimentation coefficient of the macromolecule was 17.4 ± 0.1 S, and its molecular mass was 583 kDa (hemoglobin-rich animals) determined by AUC and 590.4 ± 11.1 kDa (hemoglobin-rich animals) and 597.5 ± 49 kDa (hemoglobin-poor animals), respectively, determined by multiangle laser light scattering. Measurements of the hemoglobin subunit mass of hemoglobin-rich animals by electrospray ionization mass spectrometry revealed a significant peak at 36.482 ± 0.0015 kDa, i.e. 37.715 kDa including two heme groups. The hemoglobin subunits are modified by O-linked glycosylation in the pre-A segments of domains 1. No evidence for phosphorylation of hemoglobin subunits was found. The subunit migration behavior during SDS/PAGE was shown to be influenced by the buffer system used (Tris versus phosphate). The subunit mass heterogeneity found using Tris buffering can be explained by glycosylation of hemoglobin subunits. Based on molecular mass information, Daphnia magna hemoglobin is demonstrated to consist of 16 subunits. The quaternary structure of the Daphnia magna hemoglobin macromolecule was assessed by three-dimensional reconstructions via single-particle analysis based on negatively stained electron microscopic specimens. It turned out to be much more complex than hitherto proposed: it displays D4 symmetry with a diameter of approximately 12 nm and a height of about 8 nm. [source]


    Identification of crucial residues for the antibacterial activity of the proline-rich peptide, pyrrhocoricin

    FEBS JOURNAL, Issue 17 2002
    Goran Kragol
    Members of the proline-rich antibacterial peptide family, pyrrhocoricin, apidaecin and drosocin appear to kill responsive bacterial species by binding to the multihelical lid region of the bacterial DnaK protein. Pyrrhocoricin, the most potent among these peptides, is nontoxic to healthy mice, and can protect these animals from bacterial challenge. A structure,antibacterial activity study of pyrrhocoricin against Escherichia coli and Agrobacterium tumefaciens identified the N-terminal half, residues 2,10, the region responsible for inhibition of the ATPase activity, as the fragment that contains the active segment. While fluorescein-labeled versions of the native peptides entered E. coli cells, deletion of the C-terminal half of pyrrhocoricin significantly reduced the peptide's ability to enter bacterial or mammalian cells. These findings highlighted pyrrhocoricin's suitability for combating intracellular pathogens and raised the possibility that the proline-rich antibacterial peptides can deliver drug leads into mammalian cells. By observing strong relationships between the binding to a synthetic fragment of the target protein and antibacterial activities of pyrrhocoricin analogs modified at strategic positions, we further verified that DnaK was the bacterial target macromolecule. Inaddition, the antimicrobial activity spectrum of native pyrrhocoricin against 11 bacterial and fungal strains and the binding of labeled pyrrhocoricin to synthetic DnaK D-E helix fragments of the appropriate species could be correlated. Mutational analysis on a synthetic E. coli DnaK fragment identified a possible binding surface for pyrrhocoricin. [source]


    Super-channel in bacteria: function and structure of the macromolecule import system mediated by a pit-dependent ABC transporter

    FEMS MICROBIOLOGY LETTERS, Issue 2 2001
    Yumiko Mishima
    Abstract In a soil isolate, Sphingomonas sp. A1, the transport of a macromolecule (alginate: 27 kDa) is mediated by a pit-dependent ATP-binding cassette (ABC) transporter. The transporter is different from other ABC transporters so far analyzed in that its function is dependent on a pit, a mouth-like organ formed on the cell surface only when cells are compelled to assimilate macromolecules, and in that it allows direct import of macromolecules into cells. The ABC transporter coupled with the pit, which functions as a funnel and/or concentrator of macromolecules to be imported, was designated the ,super-channel', and in this review, we discuss the three-dimensional structure and specific function of the ,super-channel' for macromolecule import found for the first time in a bacterium. [source]


    The Development of Light-Emitting Dendrimers for Displays,

    ADVANCED MATERIALS, Issue 13 2007
    L. Burn
    Abstract Dendrimers are now an important class of light-emitting material for use in organic light-emitting diodes (OLEDs). Dendrimers are branched macromolecules that consist of a core, one or more dendrons, and surface groups. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. The first light-emitting dendrimers were fluorescent but more recently highly efficient phosphorescent dendrimers have been developed. OLEDs containing light-emitting dendrimers have been reported to have external quantum efficiencies of up to 16,%. The solubility of the dendrimers opens the way for simple processing and a new class of flat-panel displays. In this Review we show how the structure of the light-emitting dendrimers controls key features such as intermolecular interactions and charge transport, which are important for all OLED materials. The advantages of the dendrimer architecture for phosphorescent emitters and the way the structure can be varied to enhance materials performance and device design are illustrated. [source]


    Combining solution wide-angle X-ray scattering and crystallography: determination of molecular envelope and heavy-atom sites

    JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2 2009
    Xinguo Hong
    Solving the phase problem remains central to crystallographic structure determination. A six-dimensional search method of molecular replacement (FSEARCH) can be used to locate a low-resolution molecular envelope determined from small-angle X-ray scattering (SAXS) within the crystallographic unit cell. This method has now been applied using the higher-resolution envelope provided by combining SAXS and WAXS (wide-angle X-ray scattering) data. The method was tested on horse hemoglobin, using the most probable model selected from a set of a dozen bead models constructed from SAXS/WAXS data using the program GASBOR at 5,Å resolution (qmax = 1.25,Å,1) to phase a set of single-crystal diffraction data. It was found that inclusion of WAXS data is essential for correctly locating the molecular envelope in the crystal unit cell, as well as for locating heavy-atom sites. An anomalous difference map was calculated using phases out to 8,Å resolution from the correctly positioned envelope; four distinct peaks at the 3.2, level were identified, which agree well with the four iron sites of the known structure (Protein Data Bank code 1ns9). In contrast, no peaks could be found close to the iron sites if the molecular envelope was constructed using the data from SAXS alone (qmax = 0.25,Å,1). The initial phases can be used as a starting point for a variety of phase-extension techniques, successful application of which will result in complete phasing of a crystallographic data set and determination of the internal structure of a macromolecule to atomic resolution. It is anticipated that the combination of FSEARCH and WAXS techniques will facilitate the initial structure determination of proteins and provide a good foundation for further structure refinement. [source]


    Possibilities of polymer-aided dyeing of cotton fabric with reactive dyes at neutral pH

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2010
    B. J. Agarwal
    Abstract Water-soluble polymers have versatile application, viz., water-soluble polyacrylates have been widely used in the reactive dyeing of cellulosic fibers and the related soaping as an important component of the leveling and washing agent. In this article, one such water-soluble polymer, polyacrylic acid has been synthesized, characterized, and applied in conjunction with various types of reactive dyes, namely triazinyl, vinyl sulfone, high exhaustion, and bifunctional reactive dyes, along with crosslinking agents, namely glycerol 1,3-dichlorohydrin and hexamethylene tetramine-hydroquinone, respectively. One of the crosslinking agents (the former one) has been synthesized in the laboratory. Crosslinking agent is necessary to adhere the dye molecule onto the cellulose macromolecule. Different process sequences have been formulated and explored for dyeing purpose. All such dyeings were carried out at neutral pH. The dyed samples were assessed through color strength in terms of K/S values and their fastness properties were assessed by standard methods. All such dyeings were compared with conventional dyed samples. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


    Inverse Monte Carlo procedure for conformation determination of macromolecules

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 7 2003
    Mark Bathe
    Abstract A novel numerical method for determining the conformational structure of macromolecules is applied to idealized biomacromolecules in solution. The method computes effective inter-residue interaction potentials solely from the corresponding radial distribution functions, such as would be obtained from experimental data. The interaction potentials generate conformational ensembles that reproduce thermodynamic properties of the macromolecule (mean energy and heat capacity) in addition to the target radial distribution functions. As an evaluation of its utility in structure determination, we apply the method to a homopolymer and a heteropolymer model of a three-helix bundle protein [Zhou, Y.; Karplus, M. Proc Natl Acad Sci USA 1997, 94, 14429; Zhou, Y. et al. J Chem Phys 1997, 107, 10691] at various thermodynamic state points, including the ordered globule, disordered globule, and random coil states. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 876,890, 2003 [source]


    Ab initio quality one-electron properties of large molecules: Development and testing of molecular tailoring approach

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 4 2003
    K. Babu
    Abstract The development of a linear-scaling method, viz. "molecular tailoring approach" with an emphasis on accurate computation of one-electron properties of large molecules is reported. This method is based on fragmenting the reference macromolecule into a number of small, overlapping molecules of similar size. The density matrix (DM) of the parent molecule is synthesized from the individual fragment DMs, computed separately at the Hartree,Fock (HF) level, and is used for property evaluation. In effect, this method reduces the O(N3) scaling order within HF theory to an n·O(N,3) one, where n is the number of fragments and N,, the average number of basis functions in the fragment molecules. An algorithm and a program in FORTRAN 90 have been developed for an automated fragmentation of large molecular systems. One-electron properties such as the molecular electrostatic potential, molecular electron density along with their topography, as well as the dipole moment are computed using this approach for medium and large test chemical systems of varying nature (tocopherol, a model polypeptide and a silicious zeolite). The results are compared qualitatively and quantitatively with the corresponding actual ones for some cases. This method is also extended to obtain MP2 level DMs and electronic properties of large systems and found to be equally successful. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 484,495, 2003 [source]


    EUDOC: a computer program for identification of drug interaction sites in macromolecules and drug leads from chemical databases

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 15 2001
    Yuan-Ping Pang
    Abstract The completion of the Human Genome Project, the growing effort on proteomics, and the Structural Genomics Initiative have recently intensified the attention being paid to reliable computer docking programs able to identify molecules that can affect the function of a macromolecule through molecular complexation. We report herein an automated computer docking program, EUDOC, for prediction of ligand,receptor complexes from 3D receptor structures, including metalloproteins, and for identification of a subset enriched in drug leads from chemical databases. This program was evaluated from the standpoints of force field and sampling issues using 154 experimentally determined ligand,receptor complexes and four "real-life" applications of the EUDOC program. The results provide evidence for the reliability and accuracy of the EUDOC program. In addition, key principles underlying molecular recognition, and the effects of structural water molecules in the active site and different atomic charge models on docking results are discussed. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1750,1771, 2001 [source]


    Application of Atomic Force Microscopy as a Nanotechnology Tool in Food Science

    JOURNAL OF FOOD SCIENCE, Issue 4 2007
    Hongshun Yang
    ABSTRACT:, Atomic force microscopy (AFM) provides a method for detecting nanoscale structural information. First, this review explains the fundamentals of AFM, including principle, manipulation, and analysis. Applications of AFM are then reported in food science and technology research, including qualitative macromolecule and polymer imaging, complicated or quantitative structure analysis, molecular interaction, molecular manipulation, surface topography, and nanofood characterization. The results suggested that AFM could bring insightful knowledge on food properties, and the AFM analysis could be used to illustrate some mechanisms of property changes during processing and storage. However, the current difficulty in applying AFM to food research is lacking appropriate methodology for different food systems. Better understanding of AFM technology and developing corresponding methodology for complicated food systems would lead to a more in-depth understanding of food properties at macromolecular levels and enlarge their applications. The AFM results could greatly improve the food processing and storage technologies. [source]


    Modifications of the iron,neuromelanin system in Parkinson's disease

    JOURNAL OF NEUROCHEMISTRY, Issue 4 2006
    Mauro Fasano
    Abstract Parkinson's disease is a common neurodegenerative disorder with a mainly sporadic aetiology, although a number of monogenic familiar forms are known. Most of the motor symptoms are due to selective depletion of dopaminergic, neuromelanin-containing neurones of the substantia nigra pars compacta. Neuromelanin is the dark insoluble macromolecule that confers the black (substantia nigra) or grey (locus coeruleus) colour to monoaminergic basal ganglia. In particular, nigral neurones are pigmented because of the accumulation of by-products of oxidative metabolism of the neurotransmitter dopamine. The occurrence of dopamine (and all the enzymatic machinery required for dopamine synthesis, re-uptake and disposal) and neuromelanin, and a large amount of iron ions that interact with them, makes dopaminergic nigral neurones peculiarly susceptible to oxidative stress conditions that, in turn, may become amplified by the iron,neuromelanin system itself. In this mini-review we describe biophysical evidence for iron,neuromelanin modifications that support this hypothesis. Furthermore, we discuss the formation of the covalent linkage between ,-synuclein and neuromelanin from the early stages of the disease. [source]


    Microchannels created by sugar and metal microneedles: Characterization by microscopy, macromolecular flux and other techniques

    JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 4 2010
    Guohua Li
    Abstract The objective of this study was to investigate the feasibility of using microneedle technology to enhance transcutaneous permeation of human immunoglobulin G (IgG) across hairless rat skin. Microchannels created by maltose and metal (DermaRollerÔ) microneedles were characterized by techniques such as methylene blue staining, histological examination, and calcein imaging. Methylene blue staining and histological sections of treated skin showed that maltose microneedles and DermaRollerÔ breached the skin barrier by creating microchannels in the skin with an average depth of ,150,µm, as imaged by confocal microscopy. Calcein imaging and pore permeability index values suggested the uniformity of the created pores in microneedle-treated skin. Transdermal studies with IgG indicated a flux rate of 45.96,ng/cm2/h, in vitro, and a Cmax of 7.27,ng/mL, in vivo, for maltose microneedles-treated skin while a flux rate of 353.17,ng/cm2/h, in vitro, and a Cmax of 9.33,ng/mL, in vivo, was achieved for DermaRollerÔ-treated skin. Transepidermal water loss measurements and methylene blue staining, in vivo, indicated the presence of microchannels for upto 24,h, when occluded. In conclusion, the microchannels created by maltose microneedles and DermaRollerÔ resulted in the percutaneous enhancement of a macromolecule, human IgG. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 1931,1941, 2010 [source]


    Poly(L-lysine) as a model drug macromolecule with which to investigate secondary structure and membrane transport, part I: physicochemical and stability studies

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 3 2002
    Montakarn Chittchang
    Low oral bioavailability of therapeutic peptides and proteins generally results from their poor permeability through biological membranes and enzymatic degradation in the gastrointestinal tract. Since different secondary structures exhibit different physicochemical properties such as hydrophobicity, size and shape, changing the secondary structure of a therapeutic polypeptide may be another approach to increasing its membrane permeation. Poly(L-lysine) was used as a model polypeptide. The objectives of this study were to induce secondary structural changes in poly(L-lysine) and to determine the time course over which a given conformer was retained. In addition, the hydrophobicity of each secondary structure of poly(L-lysine) was assessed. The circular dichroism (CD) studies demonstrated that the conditions employed could successfully induce the desired secondary structural changes in poly(L-lysine). The ,-helix conformer appeared to be more stable at 25° C whereas the ,-sheet conformer could be preserved at 37° C. On the other hand, the random coil conformer was retained at both temperatures. Significant losses of the ,-helix and the ,-sheet conformers were observed when the pH was reduced. The change in ionic strength did not affect any of the conformers. The octanol/buffer partitioning studies indicated that the ,-helix and the ,-sheet conformers exhibited significantly different (P< 0.05) hydrophobicities. In conclusion, variation of pH and temperature conditions can be used to induce secondary structural changes in poly(L-lysine). These changes are reversible when the stimuli are removed. The ,-helix and the ,-sheet conformers of poly(L-lysine) are more lipophilic than the native random coil conformer. Thus, poly(L-lysine) may represent an ideal model polypeptide with which to further investigate the effects of secondary structure on membrane diffusion or permeation. [source]


    Functionalizing the interior of dendrimers: Synthetic challenges and applications

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 8 2003
    Stefan Hecht
    Abstract Chemists' fascination with dendrimers mainly originates from their unique architecture and its exploitation for the design of well-defined functional macromolecules. Depending on the nature of the synthesis, functionalization is traditionally introduced at the core, the periphery, or both. However, the specific incorporation of functional groups at the interior layers, i.e., generations, represents a considerable synthetic hurdle that must be overcome for the full potential of dendrimers to be realized. This review covers recent advances in this emerging frontier of dendrimer science with a particular focus on covalent modifications. Monomer design, syntheses, and properties of various dendritic backbone types are discussed. Internal functionalization dramatically increases the degree of complexity that can be implemented into a dendrimer macromolecule and, therefore, promises to lead to smart materials for future applications in bio- and nanotechnologies. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1047,1058, 2003 [source]


    Synchrotron techniques for metalloproteins and human disease in post genome era

    JOURNAL OF SYNCHROTRON RADIATION, Issue 1 2004
    S. Samar Hasnain
    Metalloproteins make up some 30% of proteins in known genomes. Metalloproteins are a special class of proteins that utilise the unique properties of metal atoms in conjunction with the macromolecular assembly to perform life-sustaining processes. A number of metalloproteins are known to be involved in many disease states including ageing processes. The incorporation of the metal ion is a very tightly regulated process that, in vivo, very often requires specific chaperons to deliver and help incorporate the metal atom in the macromolecule. The lack of or inappropriate incorporation of metals along with genetic factors can lead to the mis-function of these proteins leading to disease. The mis-functions due to genetic alterations that lead to diseases like ALS (amyotrophic lateral sclerosis or motor neuron disease) and Creutzfeld Jacob disease (CJD) are now well recognised. Synchrotron radiation sources provide a unique set of structural tools, which in combination can prove extremely powerful in providing a comprehensive picture of these complex biological systems. In particular for metalloproteins, the combined use of X-ray crystallography, X-ray solution scattering and X-ray spectroscopy (XAFS) is extremely useful. We are currently engaged in a structural study where our aim is to characterize structurally and functionally metalloproteins and then transfer this knowledge to afford the problem of the mis-function of metalloproteins that lead to these terminal illnesses, either due to a gain of function/property or a loss of function/property. In this context, the benefits of adopting the `philosophy' being developed for the structural genomics effort are highlighted. [source]


    Hydrodynamic Size and Electrophoretic Mobility of Poly(styrene sulfonate) versus Molecular Weight,

    MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 19-20 2007
    Ute Böhme
    Abstract The effective charge of a macromolecule in solution is significantly smaller than the nominal charge, derived form the number of charged groups and the degree of dissociation. It is reduced by counterion condensation, shielding a considerable fraction of the macromolecules charge. As an example the influence of the molecular weight on hydrodynamic size and electrophoretic mobility of poly(styrene sulfonate) has been investigated. While from diffusion the hydrodynamic size is inferred, in a combination with electrophoresis NMR the effective charge is calculated. At low molecular weight the effective charge is equal to the nominal charge, in an intermediate range the effective charge is that predicted from counterion condensation theory, while at higher molecular weights it becomes considerably smaller. [source]


    Unmodified and Modified Surface Sisal Fibers as Reinforcement of Phenolic and Lignophenolic Matrices Composites: Thermal Analyses of Fibers and Composites

    MACROMOLECULAR MATERIALS & ENGINEERING, Issue 4 2006
    Jane Maria Faulstich de Paiva
    Abstract Summary: The study and development of polymeric composite materials, especially using lignocellulosic fibers, have received increasing attention. This is interesting from the environmental and economical viewpoints as lignocellulosic fibers are obtained from renewable resources. This work aims to contribute to reduce the dependency on materials from nonrenewable sources, by utilizing natural fibers (sisal) as reinforcing agents and lignin (a polyphenolic macromolecule obtained from lignocellulosic materials) to partially substitute phenol in a phenol-formaldehyde resin. Besides, it was intended to evaluate how modifications applied on sisal fibers influence their properties and those of the composites reinforced with them, mainly thermal properties. Sisal fibers were modified by either (i) mercerization (NaOH 10%), (ii) esterification (succinic anhydride), or (iii) ionized air treatment (discharge current of 5 mA). Composites were made by mould compression, of various sisal fibers in combination with either phenol-formaldehyde or lignin-phenol-formaldehyde resins. Sisal fibers and composites were characterized by thermogravimetry (TG) and DSC to establish their thermal stability. Scanning electron microscopy (SEM) was used to investigate the morphology of unmodified and modified surface sisal fibers as well as the fractured composites surface. Dynamic mechanical thermoanalysis (DMTA) was used to examine the influence of temperature on the composite mechanical properties. The results obtained for sisal fiber-reinforced phenolic and lignophenolic composites showed that the use of lignin as a partial substitute of phenol in phenolic resins in applications different from the traditional ones, as for instance in other than adhesives is feasible. Micrograph of the impact fracture surface of phenolic composite reinforced with mercerized sisal fiber (500 X). [source]


    Electropolymerizable Terthiophene S,S -Dioxide-Fullerene Diels-Alder Adduct for Donor/Acceptor Double-Cable Polymers

    MACROMOLECULAR RAPID COMMUNICATIONS, Issue 12 2007
    Yolanda Vida
    Abstract The preparation of a novel fullerene-thiophene derivative by Diels-Alder addition of terthiophene S,S -dioxide was demonstrated. Extrusion of SO2 from the adduct is an effective process that yields a stable cyclohexadiene-1,4-bisthiophene,C60 adduct in good isolable yield. The product has been accurately characterized and opens the way to synthesize new C60 derivatives "via" Diels-Alder methodology without the possibility of cycloreversion. Electrochemical and spectroscopic properties of this macromolecule were studied and supported by theoretical calculations to interpret its electronic structure. The first approach to the electropolymerization of this macromonomer produces donor-acceptor molecular wires providing a new and versatile way to fullerene-based double cable polymers. [source]


    Investigations into the Chemical Modification of Polyolefin Surfaces by Radical Reactions during Molding

    MACROMOLECULAR REACTION ENGINEERING, Issue 4 2007
    Jürgen Nagel
    Abstract The surfaces of polyolefin parts are usually modified by separate processing steps. In this paper, we investigate how an in situ surface modification of polyolefins could be realized during molding, based on radical reactions, by which a macromolecule with functional groups is grafted to the polyolefin surface. The temperature of the melt is used to initialize the reactions. The different steps of the radical reaction chain were analyzed using model reactions. A modifier composition consisting of dibenzoylperoxide, potassium persulfate and poly(vinyl alcohol) revealed to be suitable. This composition was used for injection molding experiments. The bondability of the injection molded parts was largely enhanced. [source]


    AB-Block Copolymer with Moving B Blocks as a Model for Interpolymer Complexes

    MACROMOLECULAR THEORY AND SIMULATIONS, Issue 5 2010
    Olga S. Pevnaya
    Abstract The conformational behavior of a single AB block copolymer is studied by Monte Carlo simulation. The A-A and A-B interactions have the character of excluded volume interactions while the B units attract each other; the attractive B blocks can move along the chain. The collapse transition of the chain with increasing attraction between the B units is analyzed. Intrachain separation of the A and B units takes place in the course of the chain collapse with the formation of "globule with a tail" conformations. The globule is formed by the attractive moving B blocks while the tail consists of the swollen A segments. The model of AB block copolymer with moving B blocks can describe the behavior of interpolymer complexes between a long macromolecule and shorter polymer chains. [source]


    Distinct Diffusion in Macromolecule-Solvent Mixtures

    MACROMOLECULAR THEORY AND SIMULATIONS, Issue 1 2005
    Alessandro Vergara
    Abstract Summary: The specificity of interactions between pairs of molecules cannot be explicitly given by experimental transport coefficients such as intra- or mutual diffusion coefficients. But a microscopic interpretation of the transport properties exists, where distinct diffusion coefficients (DDCs) are related to preferential, correlated motion among distinct molecules. Since in general the DDCs do not play the role of an indicator for molecular self-association phenomena if not compared with some appropriate standard, here we propose DDCs of hard spheres at the second order of volume fraction as new standard coefficients. The analysis based on these novel DDCs is designed to study intermolecular interaction between macromolecule and solvent. Comparisons of the novel non-ideal with previous ideal reference states were done, and their combined use is shown to reinforce information conveyed by the usual velocity correlation analysis. The comparison of novel hard sphere standards with real DDCs, corresponding to an homologous chemical series of poly(ethylene glycol)-water mixtures, provides a look at this polymer-solvent mixture in a dilute and semi-dilute regime. Comparison between real (calculated by using Equation (5),(7) and experimental data) and hard-sphere based distinct diffusion coefficients for PEG 200 (1: D; 2: D and 3: D). [source]


    Methyl TROSY: explanation and experimental verification

    MAGNETIC RESONANCE IN CHEMISTRY, Issue 10 2003
    Jason E. Ollerenshaw
    Abstract In TROSY experiments, relaxation interference effects are exploited to produce spectra with improved resolution and signal-to-noise. Such experiments cannot be explained using the standard product operator formalism, but must instead be analyzed at the level of individual density matrix elements. Herein we illustrate this point using an example from our recent work on a TROSY 1H,13C correlation experiment for methyl groups in large proteins. Methyl groups are useful spectroscopic probes of protein structure and dynamics because they are found throughout the critical core region of a folded protein and their resonances are intense and well dispersed. Additionally, it is relatively easy to produce highly deuterated protein samples that are 1H,13C labeled at selected methyl positions, facilitating studies of high molecular weight systems. Methyl groups are relaxed by a network of 1H,1H and 1H,13C dipolar interactions, and in the macromolecular limit the destructive interference of these interactions leads to unusually slow relaxation for certain density matrix elements. It is this slow relaxation that forms the basis for TROSY experiments. We present a detailed analysis of evolution and relaxation during HSQC and HMQC pulse schemes for the case of a 13C1H3 spin system attached to a macromolecule. We show that the HMQC sequence is already optimal with respect to the TROSY effect, offering a significant sensitivity enhancement over HSQC at any spectrometer field strength. The gain in sensitivity is established experimentally using samples of two large proteins, malate synthase G (81.4 kDa) and ClpP protease (305 kDa), both highly deuterated and selectively 1H,13C-labeled at isoleucine , methyl positions. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Diffusion-weighted spectroscopy: A novel approach to determine macromolecule resonances in short-echo time 1H-MRS

    MAGNETIC RESONANCE IN MEDICINE, Issue 4 2010
    N. Kunz
    Abstract Quantification of short-echo time proton magnetic resonance spectroscopy results in >18 metabolite concentrations (neurochemical profile). Their quantification accuracy depends on the assessment of the contribution of macromolecule (MM) resonances, previously experimentally achieved by exploiting the several fold difference in T1. To minimize effects of heterogeneities in metabolites T1, the aim of the study was to assess MM signal contributions by combining inversion recovery (IR) and diffusion-weighted proton spectroscopy at high-magnetic field (14.1 T) and short echo time (=8 msec) in the rat brain. IR combined with diffusion weighting experiments (with ,/, = 1.5/200 msec and b -value = 11.8 msec/,m2) showed that the metabolite nulled spectrum (inversion time = 740 msec) was affected by residuals attributed to creatine, inositol, taurine, choline, N -acetylaspartate as well as glutamine and glutamate. While the metabolite residuals were significantly attenuated by 50%, the MM signals were almost not affected (<8%). The combination of metabolite-nulled IR spectra with diffusion weighting allows a specific characterization of MM resonances with minimal metabolite signal contributions and is expected to lead to a more precise quantification of the neurochemical profile. Magn Reson Med, 2010. © 2010 Wiley-Liss, Inc. [source]


    Semisynthesis of unnatural amino acid mutants of paxillin: Protein probes for cell migration studies

    PROTEIN SCIENCE, Issue 3 2007
    Elizabeth M. Vogel
    Abstract Caged phosphopeptides and phosphoproteins are valuable tools for dissecting the dynamic role of phosphorylation in complex signaling networks with temporal and spatial control. Demonstrating the broad scope of phosphoamino acid caging for studying signaling events, we report here the semisynthesis of a photolabile precursor to the cellular migration protein paxillin, which is a complex, multidomain phosphoprotein. This semisynthetic construct provides a powerful probe for investigating the influence that phosphorylation of paxillin at a single site has on cellular migration. The 61-kDa paxillin construct was assembled using native chemical ligation to install a caged phosphotyrosine residue at position 31 of the 557-residue protein, and the probe includes all other binding and localization determinants in the paxillin macromolecule, which are essential for creating a native environment to investigate phosphorylation. Following semisynthesis, paxillin variants were characterized through detailed biochemical analyses and by quantitative uncaging studies. [source]


    Off-line pyrolysis and compound-specific stable carbon isotope analysis of lignin moieties: a new method for determining the fate of lignin residues in soil,

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 11 2008
    Jennifer A. J. Dungait
    Off-line pyrolysis was used to liberate lignin moieties from dung and soil and, after trimethylsilylation, the ,13C values of these derivatives were determined by gas chromatography-combustion-isotope ratio mass spectrometry. Initial ,13C values determined for 4-vinylphenol, syringol, 4-vinylguaiacol, 4-acetylsyringol, 4-vinylsyringol, 4-(2- Z -propenyl)syringol, 4-(2- E -propenyl)syringol and 4-(2-propenone)syringol pyrolysis products of the lignin polyphenol structure from C4 (,13Cbulk,=,,12.6%) and C3 (,13Cbulk,=,,30.1,) dung confirmed the robust and reproducible nature of the off-line preparation technique. C4 dung was used as a treatment in a randomised field experiment to assess the short-term sequestration of dung carbon in managed grasslands. Since lignin was on average 3.5, depleted in 13C compared with bulk dung ,13C values, this may have resulted in an under-estimation of dung C incorporation based on bulk ,13C values. Therefore, an investigation of the compound-specific ,13C values of dung-derived lignin moieties extracted from soils sampled up to 372 days was undertaken. ,13C values between lignin moieties extracted from treated and untreated soils showed that dung-derived lignin was not especially resistant to degradation and suggested that individual moieties of the lignin macromolecule must: (i) move into soil, (ii) be degraded, or (iii) be transformed diagenetically at different rates. This adds to a gathering body of evidence that lignin is not particularly stable in soils, which has considerable significance for the perceived role of different biochemical components in the cycling of C in soils. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Know your dose: RADDOSE

    ACTA CRYSTALLOGRAPHICA SECTION D, Issue 4 2010
    Karthik S. Paithankar
    The program RADDOSE is widely used to compute the dose absorbed by a macromolecular crystal during an X-ray diffraction experiment. A number of factors affect the absorbed dose, including the incident X-ray flux density, the photon energy and the composition of the macromolecule and of the buffer in the crystal. An experimental dose limit for macromolecular crystallography (MX) of 30,MGy at 100,K has been reported, beyond which the biological information obtained may be compromised. Thus, for the planning of an optimized diffraction experiment the estimation of dose has become an additional tool. A number of approximations were made in the original version of RADDOSE. Recently, the code has been modified in order to take into account fluorescent X-ray escape from the crystal (version 2) and the inclusion of incoherent (Compton) scattering into the dose calculation is now reported (version 3). The Compton cross-section, although negligible at the energies currently commonly used in MX, should be considered in dose calculations for incident energies above 20,keV. Calculations using version 3 of RADDOSE reinforce previous studies that predict a reduction in the absorbed dose when data are collected at higher energies compared with data collected at 12.4,keV. Hence, a longer irradiation lifetime for the sample can be achieved at these higher energies but this is at the cost of lower diffraction intensities. The parameter `diffraction-dose efficiency', which is the diffracted intensity per absorbed dose, is revisited in an attempt to investigate the benefits and pitfalls of data collection using higher and lower energy radiation, particularly for thin crystals. [source]


    Diffraction data analysis in the presence of radiation damage

    ACTA CRYSTALLOGRAPHICA SECTION D, Issue 4 2010
    Dominika Borek
    In macromolecular crystallography, the acquisition of a complete set of diffraction intensities typically involves a high cumulative dose of X-ray radiation. In the process of data acquisition, the irradiated crystal lattice undergoes a broad range of chemical and physical changes. These result in the gradual decay of diffraction intensities, accompanied by changes in the macroscopic organization of crystal lattice order and by localized changes in electron density that, owing to complex radiation chemistry, are specific for a particular macromolecule. The decay of diffraction intensities is a well defined physical process that is fully correctable during scaling and merging analysis and therefore, while limiting the amount of diffraction, it has no other impact on phasing procedures. Specific chemical changes, which are variable even between different crystal forms of the same macromolecule, are more difficult to predict, describe and correct in data. Appearing during the process of data collection, they result in gradual changes in structure factors and therefore have profound consequences in phasing procedures. Examples of various combinations of radiation-induced changes are presented and various considerations pertinent to the determination of the best strategies for handling diffraction data analysis in representative situations are discussed. [source]


    On the routine use of soft X-rays in macromolecular crystallography.

    ACTA CRYSTALLOGRAPHICA SECTION D, Issue 3 2007
    Part IV.
    23 different crystal forms of 19 different biological macromolecules were examined with respect to their anomalously scattering substructures using diffraction data collected at a wavelength of 2.0,Å (6.2,keV). In more than 90% of the cases the substructure was found to contain more than just the protein S atoms. The data presented suggest that chloride, sulfate, phosphate or metal ions from the buffer or even from the purification protocol are frequently bound to the protein molecule and that these ions are often overlooked, especially if they are not bound at full occupancy. Thus, in order to fully describe the macromolecule under study, it seems desirable that any structure determination be complemented with a long-wavelength data set. [source]