Home About us Contact | |||
Macroinvertebrate Communities (macroinvertebrate + community)
Kinds of Macroinvertebrate Communities Terms modified by Macroinvertebrate Communities Selected AbstractsStructure of Macroinvertebrate Communities in Relation to Environmental Variables in a Subtropical Asian River SystemINTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 1 2010Xiao-Ming Jiang Abstract Subtropical Asian rivers support a highly diverse array of benthic macroinvertebrates. Yet, their biodiversity and functionality has been poorly investigated. We choose the Chishui River system, one of the largest un-dammed, first level branches upstream of the Yangtze River, China, to: 1) determine the spatial pattern of macroinvertebrate diversity and community structure, and 2) examine the influence of variables at local habitat and basin scales on the distribution of macroinvertebrate communities. Samples were collected from 43 sites in spring of 2007. After Canonical Correspondence Analysis, two basin and five habitat variables were found to be significant predictors of the macroinvertebrate community structure. Variance partitioning analysis showed that habitat physical variables had a greater influence than other environmental variables in macroinvertebrate community, which suggested that preserving habitat, especially upstream, should be strongly considered in biological conservation. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Stream Macroinvertebrate Community Affected by Point-Source Metal PollutionINTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 3 2007Hideyuki Doi Abstract The impacts of mining activities on aquatic biota have been documented in many stream ecosystems. In mining streams, point-source heavy metal pollution often appears in the stream. We hypothesize that this pollution is toxic to macroinvertebrates owing to high concentrations of metals and therefore affects macroinvertebrate community structure. We investigated macroinvertebrate community structure in mountain streams, including heavy metal-polluted sites and neutral-pH streams, to determine the relationship between community structure and environmental factors such as low pH and heavy metal concentrations. Based on multidimensional scaling ordination, the macroinvertebrate community at heavy metal pollution sites was remarkably different from that at the other sites. Inductively coupled plasma mass spectrometry revealed high concentrations of aluminum and iron in surface water at the polluted sites. Macroinvertebrate community structure at the metal pollution sites was significantly different from that at other sites in the same stream and in neutral-pH streams. Thus, point-source metal pollution may reduce the density and diversity of in situ macroinvertebrates. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Response of macroinvertebrates to copper and zinc in a stream mesocosmENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2002Christopher W Hickey Abstract Metal pollution of streams and rivers is recognized as one of the major concerns for management of freshwaters. Macroinvertebrate communities were established within 12 artificial streams and exposed to three replicated concentrations of a metals mixture (copper and zinc) for 34 d. The cumulative criterion units (CCU = ,[metals]/hardness-adjusted U.S. Environmental Protection Agency [U.S. EPA] 1996 chronic criterion value) of total metals in the low, medium, and high treatments were 2.4, 5.9, and 18 CCUs. Zinc comprised approximately 75% of the CCUs in each of the treatments. Effects on taxa richness and the number of taxa in the orders Ephemeroptera, Plecoptera, and Trichoptera (EPT) were moderate at the high exposure concentration (,23% and ,26% respectively, p < 0.05). All of the five major mayfly species showed near extinction, whereas four of the seven caddisflies showed stimulation (up to +121%) and three were reduced (up to ,76%). Redundancy analysis for this metal gradient indicated that 94% of the variance in community structure was explained by three quantitative variables: total mayfly abundance, a mollusk (Potamopyrgus antipodarum) abundance, and the number of EPT individuals, indicating that multiple indices do provide improved predictors of metal stress. Most species showed a threshold response relationship, whereas some community indicators showed apparent hormetic responses (e.g., number of mayfly taxa, total taxa, and number of EPT taxa). Model concentration-response relationships with generalized linear models were used to provide threshold of 20% effective concentration values for species and community metrics. Threshold effect values ranged upwards of 1.4 CCUs, indicating that U.S.EPA chronic criteria would be protective of species and community responses. [source] Ecological responses to nutrients in streams and rivers of the Colorado mountains and foothillsFRESHWATER BIOLOGY, Issue 9 2010WILLIAM M. LEWIS Summary 1. Abundance and composition of periphyton and benthic macroinvertebrates were treated as potential nutrient response variables for 74 streams in montane Colorado. The streams ranged from unenriched to mildly enriched with nutrients (N, P). 2. The study showed no meaningful relationship between periphyton biomass accumulation and concentrations of total or dissolved forms of nitrogen or phosphorus. Nutrient concentrations were also unrelated to periphyton and macroinvertebrate richness, diversity and community composition. Macroinvertebrate communities did, however, show a strong positive relationship to periphyton abundance. 3. A positive response of periphyton biomass to increasing nutrient concentrations has been well documented over large ranges of nutrient concentrations. Our study suggests that the nutrient response is suppressed by other controlling factors on the lower limb of the nutrient response curve (i.e. at low nutrient concentrations); a quantitatively significant response occurs only in excess of a threshold beyond which nutrients become dominant over other controlling factors. This interpretation of the results is consistent with published meta-analyses showing lack of nutrient response for a high proportion of experimentally enriched periphyton communities, and division of responses between N and P for communities that do show growth in response to enrichment. 4. Grazing probably is not the key controlling variable for periphyton in Colorado mountain streams, given that the highest chlorophyll concentrations are associated with the highest abundances of macroinvertebrates. Modelling indicates that the initial amount of periphyton biomass at the start of the growing season, in conjunction with elevation-related length of the growing season and water temperature, explains most of the variation in periphyton accumulation among these streams, but there is a yet unexplained suppression of periphyton growth rates across all elevations. [source] Stream macroinvertebrate occurrence along gradients in organic pollution and eutrophicationFRESHWATER BIOLOGY, Issue 7 2010NIKOLAI FRIBERG Summary 1.,We analysed a large number of concurrent samples of macroinvertebrate communities and chemical indicators of eutrophication and organic pollution [total-P, total-N, NH4,N, biological oxygen demand (BOD5)] from 594 Danish stream sites. Samples were taken over an 11-year time span as part of the Danish monitoring programme on the aquatic environment. Macroinvertebrate communities were sampled in spring using a standardised kick-sampling procedure whereas chemical variables were sampled six to 24 times per year per site. Habitat variables were assessed once when macroinvertebrates were sampled. 2.,The plecopteran Leuctra showed a significant negative exponential relationship (r2 = 0.90) with BOD5 and occurred at only 16% of the sites with BOD5 above 1.6 mg L,1. Sharp declines with increasing BOD5 levels were found for the trichopteran families Sericostomatidae and Glossosomatidae although they appeared to be slightly less sensitive than Leuctra. Other plecopterans such as Isoperla showed a similar type of response curve to Leuctra (negative exponential) but occurred at sites with relatively high concentrations of BOD5 up to 3,4 mg L,1. In contrast, the response curve of the isopod Asellus aquaticus followed a saturation function reaching a plateau above 3,4 mg L,1 BOD5 and the dipteran Chironomus showed an exponential increase in occurrence with increasing BOD5 concentration. 3.,Macroinvertebrate occurrence appeared to be related primarily to concentrations of BOD5, NH4,N and total-P whereas there were almost no relationships to total-N. Occurrence of a number of taxa showed a stronger relationship to habitat conditions (width and substrate) than chemical variables. 4.,Important macroinvertebrate taxa are reduced at concentrations of BOD5 that are normally perceived as indicating unimpacted stream site conditions. Our results confirmed sensitivity/tolerance patterns used by existing bioassessment systems only to some degree. [source] Community effects of invasive macrophyte control: role of invasive plant abundance and habitat complexityJOURNAL OF APPLIED ECOLOGY, Issue 2 2010Katya E. Kovalenko Summary 1. The control of invasive species has become a widespread management practice, yet information on the community effects of such efforts is very limited, there is no unified framework for monitoring their success and no guidelines exist to help minimize potential adverse impacts. 2. This study was conducted to determine how long-term efforts to control a widespread invasive macrophyte, Eurasian watermilfoil, affect native macrophytes, fish and macroinvertebrates. In addition, we examined how members of the aquatic fauna respond to changes in invasive macrophyte abundance and habitat complexity to understand the mechanisms underlying any potential community response. 3. Selective control of the invasive macrophyte had minor effects on habitat complexity due to timely recolonization by native macrophytes and it did not affect littoral fish richness and abundance. Macroinvertebrate communities were highly variable and some of that variation could be attributed to characteristics of the macrophyte community. Fish and macroinvertebrates were more affected by habitat complexity than by other attributes of the macrophyte assemblage. 4.Synthesis and applications. Management plans to control invasive species need to prioritize selective removal and timely restoration of the native assemblage. In this study, the invasive macrophyte was used by aquatic fauna, which emphasizes the need for immediate restoration of the native macrophyte community to mitigate for the lost habitat after invasive plant control efforts. As both fish and macroinvertebrates were more affected by complexity than other attributes of the macrophyte assemblage, re-establishment of habitat complexity appears to be a promising restoration strategy. On a more general note, we highlight the importance of assessing community response to the habitat provided by the invader and invader's function in the community when evaluating strategies to control invasive species. [source] The Effects of Doubling Limestone Sand Applications in Two Acidic Southwestern Pennsylvania StreamsRESTORATION ECOLOGY, Issue 1 2005A.L. Keener Abstract We studied the effects of limestone sand additions in Bear and Rock runs, two chronically and episodically acidified streams in southwestern Pennsylvania, U.S.A. Linn Run, a nearby episodically acidified stream, served as a reference stream. Our objectives were to evaluate the effects of doubling recommended limestone sand amounts on water quality and macroinvertebrates on Bear and Rock runs and to assess substrate changes resulting from limestone sand inundation. Approximately 23 and 6 tonnes of limestone sand were added annually to the headwaters of Bear and Rock runs, respectively, from 1999 to 2001. In 2002, amounts were doubled. Macroinvertebrate communities were assessed from 1999 to 2003 at points above and below the sand additions on Bear Run and Rock Run. Small, plastic substrate samplers were used to assess sand substrate effects. Doubling annual limestone sand amounts resulted in significantly improved pH and acid-neutralizing capacity; however, total dissolved aluminum increased significantly downstream (,, 0.05). Macroinvertebrate density and diversity were not significantly affected, but an increase in acid-sensitive taxa was observed at a site 3,500 m downstream. Substrate sampler data indicated a significant negative relationship between amount of sand deposited and density of macroinvertebrates. The mixed water quality and benthic macroinvertebrate results were reasonably consistent with earlier work and call into question the use of limestone sand in the restoration of chronically and episodically acidified waters. [source] Impacts of Dreissena invasions on benthic macroinvertebrate communities: a meta-analysisDIVERSITY AND DISTRIBUTIONS, Issue 2 2007Jessica M. Ward ABSTRACT Dreissenid mussels (the zebra mussel Dreissena polymorpha and the quagga mussel Dreissena bugensis) have invaded lakes and rivers throughout North America and Europe, where they have been linked to dramatic changes in benthic invertebrate community diversity and abundance. Through a meta-analysis of published data from 47 sites, we developed statistical models of Dreissena impact on benthic macroinvertebrates across a broad range of habitats and environmental conditions. The introduction of Dreissena was generally associated with increased benthic macroinvertebrate density and taxonomic richness, and with decreased community evenness (of taxa excluding Dreissena). However, the strength of these effects varied with sediment particle size across sites. The effects of Dreissena differed among taxonomic and functional groups of macroinvertebrates, with positive effects on the densities of scrapers and predators, particularly leeches (Hirudinea), flatworms (Turbellaria), and mayflies (Ephemeroptera). Gastropod densities increased in the presence of Dreissena, but large-bodied snail taxa tended to decline. Dreissena was associated with declines in the densities sphaeriid clams and other large filter-feeding taxa, as well as burrowing amphipods (Diporeia spp.), but had strong positive effects on gammarid amphipods. These patterns are robust to variation in the methodology of primary studies. The effects of Dreissena are remarkably concordant with those of ecologically similar species, suggesting universality in the interactions between introduced byssally attached mussels and other macroinvertebrates. [source] The effects of stream canopy management on macroinvertebrate communities and juvenile salmonid production in a chalk streamFISHERIES MANAGEMENT & ECOLOGY, Issue 2 2009W. D. RILEY Abstract, The effects of changes in shading (through riparian canopy removal and re-growth) on juvenile salmon, Salmo salar L., trout, Salmo trutta L., and grayling, Thymallus thymallus (L.) populations, and macroinvertebrate biomass and species composition in a chalk stream in southern England were examined. Low levels of in-stream weed growth, because of shading by closed tree canopy, diminished macroinvertebrate production and diversity. 0+ salmon and trout had lower densities under closed canopy, relative to adjacent open sites with substantial weed cover, where fish were also found to be larger. Canopy removal positively affected the growth of aquatic macrophytes and the availability of potential prey for juvenile salmonids. The findings have implications for the management of chalk streams, in particular, that riparian tree canopy should be managed to prevent complete closure, and excessive cutting of weed should be avoided where salmon production is below sustainable levels. [source] Stream macroinvertebrate occurrence along gradients in organic pollution and eutrophicationFRESHWATER BIOLOGY, Issue 7 2010NIKOLAI FRIBERG Summary 1.,We analysed a large number of concurrent samples of macroinvertebrate communities and chemical indicators of eutrophication and organic pollution [total-P, total-N, NH4,N, biological oxygen demand (BOD5)] from 594 Danish stream sites. Samples were taken over an 11-year time span as part of the Danish monitoring programme on the aquatic environment. Macroinvertebrate communities were sampled in spring using a standardised kick-sampling procedure whereas chemical variables were sampled six to 24 times per year per site. Habitat variables were assessed once when macroinvertebrates were sampled. 2.,The plecopteran Leuctra showed a significant negative exponential relationship (r2 = 0.90) with BOD5 and occurred at only 16% of the sites with BOD5 above 1.6 mg L,1. Sharp declines with increasing BOD5 levels were found for the trichopteran families Sericostomatidae and Glossosomatidae although they appeared to be slightly less sensitive than Leuctra. Other plecopterans such as Isoperla showed a similar type of response curve to Leuctra (negative exponential) but occurred at sites with relatively high concentrations of BOD5 up to 3,4 mg L,1. In contrast, the response curve of the isopod Asellus aquaticus followed a saturation function reaching a plateau above 3,4 mg L,1 BOD5 and the dipteran Chironomus showed an exponential increase in occurrence with increasing BOD5 concentration. 3.,Macroinvertebrate occurrence appeared to be related primarily to concentrations of BOD5, NH4,N and total-P whereas there were almost no relationships to total-N. Occurrence of a number of taxa showed a stronger relationship to habitat conditions (width and substrate) than chemical variables. 4.,Important macroinvertebrate taxa are reduced at concentrations of BOD5 that are normally perceived as indicating unimpacted stream site conditions. Our results confirmed sensitivity/tolerance patterns used by existing bioassessment systems only to some degree. [source] Fire, flow and dynamic equilibrium in stream macroinvertebrate communitiesFRESHWATER BIOLOGY, Issue 2 2010ROBERT S. ARKLE Summary 1. The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4-year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (,NBR) from satellite imagery to quantify the percentage of each catchment's riparian and upland vegetation that burned at high and low severity. 2. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year-to-year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. 3. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. 4. These analyses suggest that interactions among fire, flow and stream habitat may increase inter-annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area. [source] Short-term climatic trends affect the temporal variability of macroinvertebrates in California ,Mediterranean' streamsFRESHWATER BIOLOGY, Issue 12 2007LEAH A. BÊCHE Summary 1. Long-term studies in ecology are essential for understanding natural variability and in interpreting responses to disturbances and human perturbations. We assessed the long-term variability, stability and persistence of macroinvertebrate communities by analysing data from three regions in northern California with a mediterranean-climate. During the study period, precipitation either increased or decreased, and extreme drought events occurred in each region. 2. Temporal trends in precipitation resulted in shifts from ,dry-year' communities, dominated by taxa adapted to no or low flow, to ,wet-year' communities dominated by taxa adapted to high flows. The abundance of chironomid larvae was an important driver of community change. Directional change in community composition occurred at all sites and was correlated with precipitation patterns, with more dramatic change occurring in smaller streams. 3. All communities exhibited high to moderate persistence (defined by the presence/absence of a species) and moderate to low stability (defined by changes in abundance) over the study period. Stability and persistence were correlated with climatic variation (precipitation and El Niño Southern Oscillation) and stream size. Stability and persistence increased as a result of drought in small streams (first-order) but decreased in larger streams (second- and third-order). Communities from the dry season were less stable than those from the wet-season. 4. This study demonstrates the importance of long-term studies in capturing the effects of and recovery from rare events, such as the prolonged and extreme droughts considered here. [source] Predation by the tropical plant Utricularia foliosaFRESHWATER BIOLOGY, Issue 11 2006LIZANDRO SANABRIA-ARANDA Summary 1. We examined the prey captured by individual plants of the tropical carnivorous plant Utricularia foliosa, located in different areas along a creek in the Colombian Amazon and the zooplankton and macroinvertebrate communities associated with the plants. The aims were: (i) to determine whether bladders of different sizes within each plant catch different numbers of prey or exploit different size ranges and types of prey, (ii) if the quantity and composition of prey captured varies temporally and/or spatially and (iii) if the plant has evolved effective mechanisms of attracting prey. 2. Utricularia foliosa captured the most abundant species of macroinvertebrates associated with the plant. Larger bladders captured more, larger and more diverse prey. However, benefits of the extra prey caught by large bladders were not offset by the greater cost of producing bladders larger than approximately 1650 ,m. 3. The number of prey captured was higher in those plants with more carbohydrates per bladder and with a higher ratio of antenna size/bladder length. The antennae enhance capture success by offering the prey a favourable substratum that exploits their natural locomotor and feeding behaviour. However, although carbohydrates may lure prey, carbohydrate production was not a strategy of the plant to enhance the capture of prey, because the amount of carbohydrates in the bladder was related to the abundance of periphyton. [source] Louisiana waterthrushes (Seiurus motacilla) and habitat assessments as cost-effective indicators of instream biotic integrityFRESHWATER BIOLOGY, Issue 10 2006B. J. MATTSSON Summary 1. Benthic stream animals, in particular macroinvertebrates, are good indicators of water quality, but sampling can be laborious to obtain accurate indices of biotic integrity. Thus, tools for bioassessment that include measurements other than macroinvertebrates would be valuable additions to volunteer monitoring protocols. 2. We evaluated the usefulness of a stream-dependent songbird, the Louisiana waterthrush (waterthrush, Seiurus motacilla) and the Environmental Protection Agency Visual Habitat Assessment (EPA VHA) as indicators of the macrobenthos community in headwater streams of the Georgia Piedmont, U.S.A. We sampled macrobenthos, surveyed waterthrushes and measured habitat characteristics along 39 headwater reaches across 17 catchments ranging from forested to heavily urbanised or grazed by cattle. 3. Of the indicators considered, waterthrush occupancy was best for predicting relative abundances of macrobenthic taxa, while the EPA VHA was best for predicting Ephemeroptera,Plecoptera,Trichoptera (EPT) richness. Individual components of EPA VHA scores were much less useful as indicators of EPT richness and % EPT when compared with the total score. Waterthrushes were found along streams with higher % EPT, a lower Family Biotic Index (FBI) values and greater macrobenthos biomass. 4. While macroinvertebrates remain one of the most direct indicators of stream water quality, stream bird surveys and reach-scale habitat assessments can serve as cost-effective indicators of benthic macroinvertebrate communities. Using stream-dependent birds as an early warning signal for degradation of stream biotic integrity could improve the efficacy of catchment monitoring programmes in detecting and identifying perturbations within the catchment. [source] Effects of the exotic macrophyte, para grass (Urochloa mutica), on benthic and epiphytic macroinvertebrates of a tropical floodplainFRESHWATER BIOLOGY, Issue 6 2003Michael M. Douglas SUMMARY 1.,We examined the effect of the exotic macrophyte, para grass (Urochloa mutica), on benthic and epiphytic macroinvertebrates of a tropical floodplain in northern Australia. Macroinvertebrates were sampled from four grass communities: (1) para grass, (2) hymenachne (Hymenachne acutigluma), a native perennial; (3) rice (Oryza meridionalis), a native annual, and (4) areas where para grass had been sprayed with herbicide. 2.,Macroinvertebrate richness, abundance and community similarity showed very few differences among the grass communities, particularly in the epiphytic habitat. Benthic invertebrates showed some differences among grasses, with lower richness and abundance and different community structure associated with hymenachne. Herbicide control of para grass had no apparent effect on benthic invertebrates but reduced the abundance of epiphytic invertebrates in the short term. 3.,The results of this study indicate that para grass has very little impact on macroinvertebrate communities, despite the changes to macrophyte communities. This is probably because para grass has similar physical structure to the native grasses and because none of these grasses contribute directly to aquatic food webs. Control of para grass using herbicide has little impact on aquatic invertebrates. This suggests that predicting the impact of weed invasion in wetlands requires an understanding of both the functional properties of macrophytes and the habitat preferences of the macroinvertebrates. [source] Structure of Macroinvertebrate Communities in Relation to Environmental Variables in a Subtropical Asian River SystemINTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 1 2010Xiao-Ming Jiang Abstract Subtropical Asian rivers support a highly diverse array of benthic macroinvertebrates. Yet, their biodiversity and functionality has been poorly investigated. We choose the Chishui River system, one of the largest un-dammed, first level branches upstream of the Yangtze River, China, to: 1) determine the spatial pattern of macroinvertebrate diversity and community structure, and 2) examine the influence of variables at local habitat and basin scales on the distribution of macroinvertebrate communities. Samples were collected from 43 sites in spring of 2007. After Canonical Correspondence Analysis, two basin and five habitat variables were found to be significant predictors of the macroinvertebrate community structure. Variance partitioning analysis showed that habitat physical variables had a greater influence than other environmental variables in macroinvertebrate community, which suggested that preserving habitat, especially upstream, should be strongly considered in biological conservation. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Dendritic network structure constrains metacommunity properties in riverine ecosystemsJOURNAL OF ANIMAL ECOLOGY, Issue 3 2010B. L. Brown Summary 1.,Increasingly, ecologists conceptualize local communities as connected to a regional species pool rather than as isolated entities. By this paradigm, community structure is determined through the relative strengths of dispersal-driven regional effects and local environmental factors. However, despite explicit incorporation of dispersal, metacommunity models and frameworks often fail to capture the realities of natural systems by not accounting for the configuration of space within which organisms disperse. This shortcoming may be of particular consequence in riverine networks which consist of linearly -arranged, hierarchical, branching habitat elements. Our goal was to understand how constraints of network connectivity in riverine systems change the relative importance of local vs. regional factors in structuring communities. 2.,We hypothesized that communities in more isolated headwaters of riverine networks would be structured by local forces, while mainstem sections would be structured by both local and regional processes. We examined these hypotheses using a spatially explicit regional analysis of riverine macroinvertebrate communities, focusing on change in community similarity with distance between local communities [i.e., distance-decay relationships; (DDRs)], and the change in environmental similarity with distance. Strong DDRs frequently indicate dispersal-driven dynamics. 3.,There was no evidence of a DDR in headwater communities, supporting our hypothesis that dispersal is a weak structuring force. Furthermore, a positive relationship between community similarity and environmental similarity supported dynamics driven by local environmental factors (i.e., species sorting). In mainstem habitats, significant DDRs and community × environment similarity relationships suggested both dispersal-driven and environmental constraints on local community structure (i.e., mass effects). 4.,We used species traits to compare communities characterized by low vs. high dispersal taxa. In headwaters, neither strength nor mode (in-network vs. out of network) of dispersal changed our results. However, outcomes in mainstems changed substantially with both dispersal mode and strength, further supporting the hypothesis that regional forces drive community dynamics in mainstems. 5.,Our findings demonstrate that the balance of local and regional effects changes depending on location within riverine network with local (environmental) factors dictating community structure in headwaters, and regional (dispersal driven) forces dominating in mainstems. [source] Stream Condition in Piedmont Streams with Restored Riparian Buffers in the Chesapeake Bay Watershed,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2010Leslie L. Orzetti Orzetti, Leslie L., R. Christian Jones, and Robert F. Murphy, 2010. Stream Condition in Piedmont Streams with Restored Riparian Buffers in the Chesapeake Bay Watershed. Journal of the American Water Resources Association (JAWRA) 46(3):473-485. DOI: 10.1111/j.1752-1688.2009.00414.x Abstract:, This study tested the efficacy of restored forest riparian buffers along streams in the Chesapeake Bay watershed by examining habitat, selected water quality variables, and benthic macroinvertebrate community metrics in 30 streams with buffers ranging from zero to greater than 50 years of age. To assess water quality we measured in situ parameters (temperature, dissolved oxygen, and conductivity) and laboratory-analyzed grab samples (soluble reactive phosphorus, total phosphorus, nitrate, ammonium, and total suspended solids). Habitat conditions were scored using the Environmental Protection Agency Rapid Bioassessment Protocols for high gradient streams. Benthic macroinvertebrates were quantified using pooled riffle/run kick samples. Results showed that habitat, water quality, and benthic macroinvertebrate metrics generally improved with age of restored buffer. Habitat scores appeared to stabilize between 10 and 15 years of age and were driven mostly by epifaunal substrate availability, sinuosity, embeddedness, and velocity depth regime. Benthic invertebrate taxa richness, percent Ephemeroptera, Plecoptera, Trichoptera minus hydropsychids (%EPT minus H), % Ephemeroptera, and the Family Biotic Index were among the metrics which improved with age of buffer zone. Results are consistent with the hypothesis that forest riparian buffers enhance instream habitat, water quality, and resulting benthic macroinvertebrate communities with noticeable improvements occurring within 5-10 years postrestoration, leading to conditions approaching those of long established buffers within 10-15 years of restoration. [source] INFLUENCES OF WATERSHED URBANIZATION AND INSTREAM HABITAT ON MACROINVERTEBRATES IN COLD WATER STREAMS,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2003Lizhu Wang ABSTRACT: We analyzed data from riffle and snag habitats for 39 small cold water streams with different levels of watershed urbanization in Wisconsin and Minnesota to evaluate the influences of urban land use and instream habitat on macroinvertebrate communities. Multivariate analysis indicated that stream temperature and amount of urban land use in the watersheds were the most influential factors determining macroinvertebrate assemblages. The amount of watershed urbanization was nonlinearly and negatively correlated with percentages of Ephemeroptera-Plecoptera-Trichoptera (EPT) abundance, EPT taxa, filterers, and scrapers and positively correlated with Hilsenhoff biotic index. High quality macroinvertebrate index values were possible if effective imperviousness was less than 7 percent of the watershed area. Beyond this level of imperviousness, index values tended to be consistently poor. Land uses in the riparian area were equal or more influential relative to land use elsewhere in the watershed, although riparian area consisted of only a small portion of the entire watershed area. Our study implies that it is extremely important to restrict watershed impervious land use and protect stream riparian areas for reducing human degradation on stream quality in low level urbanizing watersheds. Stream temperature may be one of the major factors through which human activities degrade cold-water streams, and management efforts that can maintain a natural thermal regime will help preserve stream quality. [source] Habitat selection and sampling design for ecological assessment of heterogeneous ponds using macroinvertebratesAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 7 2009Cristina Trigal-Domínguez Abstract 1.Habitat heterogeneity has many implications in ecological assessment studies. On one hand it provides varying niches for organisms, increasing diversity. On the other hand, the inherent spatial variability of structurally complex systems may overlap with ecological condition making it difficult to disentangle the effects of perturbation. This study investigated the combined and single effects of habitat and pond condition on the macroinvertebrate assemblages of 35 ponds located in north-west Spain and spanning a range of water quality and habitat characteristics. 2.Macroinvertebrate communities and several environmental variables were sampled in the summer of 2004 or 2003. Samples were collected from four dominant habitats (vegetated shores, shores without vegetation, submerged vegetation, bare sediments) following a time-limited sampling. Non-metric multidimensional scaling and two-way crossed ANOSIM were used to investigate the taxonomic and functional differences in macroinvertebrate assemblage structure among habitats (four types) and pond conditions (optimal, good, moderate, poor, very poor). To investigate the individual and combined effects of pond condition and habitat on several diversity measures GLM models were used. In addition, the accuracy of two sampling designs , stratified and multihabitat , was compared using the CVs of seven macroinvertebrate attributes. 3.Results showed that macroinvertebrate communities differed significantly, albeit weakly, among habitat types and pond condition categories. In particular, the abundance of several Chironomidae genera, rarefied richness and Shannon index decreased both in perturbed systems and bare sediments, whereas no marked differences occurred between shores and submerged vegetation. 4.We suggest that a multihabitat approach together with the use of community attributes not (or slightly) affected by habitat type will provide more comparable results across ponds than a stratified approach or observation of the whole community, especially in ponds where degradation leads to habitat loss.Copyright © 2009 John Wiley & Sons, Ltd. [source] Distinctiveness of macroinvertebrate communities in turloughs (temporary ponds) and their response to environmental variablesAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 4 2009Gwendolin Porst Abstract 1.Turloughs are a prime example of a water body type that interfaces with both the European Habitats Directive (92/43/EEC) and Water Framework Directive (2000/60/EC) (WFD), highlighting the need for an integrated strategy to protect and manage surface waters and groundwaters. To date, research on turloughs, including their invertebrate communities is limited. 2.Eight turloughs were sampled for their macroinvertebrate communities and water chemistry in April 2007. Faunal samples were collected by means of a simple box sampler. 3.Replicate samples within each turlough clustered together, indicating that a single sample can provide a meaningful description of the turlough invertebrate community. Variation of invertebrate communities within turloughs was nested among turloughs. 4.Hydroperiod influenced mean abundance and taxon richness of macroinvertebrates, but no correlation was found between nutrient status and either mean abundance or taxon richness. 5.Turloughs are priority habitats under the EC Habitats Directive, requiring maintenance of ,favourable conservation status', which needs to be assessed through monitoring, and effected through appropriate management plans. While the distinctiveness of macroinvertebrate communities across turloughs is conducive to simple and cost-effective monitoring, this also challenges the applicability of the concept of type-specific communities across these highly dynamic ecosystems. Copyright © 2009 John Wiley & Sons Ltd. [source] Ecology and conservation status of temporary and fluctuating ponds in two areas of southern EnglandAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2009D.T. Bilton Abstract 1.A high proportion of ponds are temporary in nature, although the biodiversity value of such sites is still poorly recognized. This work explores the plant and macroinvertebrate communities of 76 temporary and fluctuating water bodies in two regions of southern England (Lizard Peninsula, Cornwall and New Forest, Hampshire) that have retained high pond densities. The ecology and conservation status of sites is examined, and comparisons made with ponds elsewhere in England and Wales. 2.Lizard and New Forest ponds supported 119 plant and 165 macroinvertebrate species respectively. Patterns of community similarity for plants and macroinvertebrates were highly concordant, taxa being related in a similar manner to measured environmental variables including pond area, depth, pH and water chemistry. 3.Patterns of pond occupancy revealed that most species were locally rare, over half occurring in less than 10% of ponds, and less than 10% being recorded from more than 50% of sites. More than 50% of ponds supported at least one nationally rare plant and almost 75% at least one nationally rare macroinvertebrate. These taxa occupied a wide range of pond types in each region, and did not have predictably different ecologies from common species. 4.Comparisons with ponds elsewhere in England and Wales revealed that Lizard and New Forest communities are nationally distinct, being most similar to ponds in areas of low intensity agriculture elsewhere in western Britain. Individual ponds in both regions supported more nationally rare taxa, on average, than ponds sampled in the national survey. 5.Ponds in the two areas have high conservation value, both regionally and nationally, supporting almost 75% of the global species richness of temporary ponds sampled across England and Wales. Within each region, many taxa are found in relatively few sites, and effective conservation of pond biodiversity will require a regional management approach. Copyright © 2008 John Wiley & Sons, Ltd. [source] Restoration effort, habitat mosaics, and macroinvertebrates , does channel form determine community composition?AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2009Sonja C. Jähnig Abstract 1.In certain lower mountainous regions of Germany multiple-channel streams constitute the reference condition for stream restoration and conservation efforts. An increasing number of restoration projects re-establish such stream sections, but their impact on macroinvertebrate communities remains vague and needs further elaboration. 2.Seven pairs of single- and multiple-channel sections of mountain rivers were compared in terms of hydromorphology and macroinvertebrate communities. The stream sections were characterized by 16 hydromorphological metrics at various scales, e.g. shore length, channel feature or substrate diversity, flow variability and substrate coverage. Macroinvertebrate data were obtained from 140 substrate-specific samples, which were combined to form representative communities for each section. Community data were subject to similarity and cluster analyses. Thirty-five metrics were calculated with the taxa lists, including number of taxa, abundance, feeding type, habitat and current preferences. 3.Bray,Curtis similarity was very high (69,77%) between communities of single- and multiple-channel sections. Biological metrics were correlated with hydromorphological parameters. Mean Spearman rank r was 0.59 (absolute values). The biological metrics percentage of the community preferring submerged vegetation, being grazers and scrapers or active filter feeders, percentage of epipotamal preference and the percentage of current preference (rheo- to limnophil and rheobiont) were significantly correlated with hydromorphological parameters. 4.Differences between stream sections can be attributed to single taxa occurring only in either the single- or multiple-channel sections. These exclusive taxa were mainly found on organic substrates such as living parts of terrestrial plants, large wood, coarse particulate organic matter (CPOM) and mud. Reasons for high similarity of macroinvertebrate communities from single- or multiple-channel sections are discussed, including the influence of large-scale catchment pressures, length of restored sections and lack of potential re-colonizers. Copyright © 2008 John Wiley & Sons, Ltd. [source] Spatial patterns in pond invertebrate communities: separating environmental and distance effectsAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 6 2005Robert A. Briers Abstract 1.The nature and extent of spatial pattern in communities has important implications for their dynamics and conservation. Previous studies of pond ecosystems, over relatively small spatial scales, have found little evidence of spatial autocorrelation of community composition. Patterns in community composition over greater spatial distances have not been documented. 2.Here, data on macroinvertebrate communities and physico-chemical characteristics of 102 ponds over a 60 × 60 km area of Oxfordshire, UK, were used to examine evidence for spatial autocorrelation in community composition and to separate the effects of environmental similarity and physical distance on community similarity. 3.Overall similarity between communities was low, but showed significant positive spatial autocorrelation. There was evidence for both environmental and physical distance effects on spatial autocorrelation of community similarity. Community similarity was negatively related to differences in environmental conditions, but effects were only significant for large environmental differences. 4.When environmental effects were accounted for, there was significant positive spatial autocorrelation of community composition over inter-site distances of up to 13 km. These results suggest that interactions between pond sites, potentially through dispersal, are evident over larger spatial scales than has previously been appreciated, and emphasize the need to consider spatial issues when developing strategies for pond conservation. Copyright © 2005 John Wiley & Sons, Ltd. [source] Aquatic macroinvertebrates in the altes land, an intensely used orchard region in Germany: Correlation between community structure and potential for pesticide exposureENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2006Christoph Schäfers Abstract To assess the impact of pesticides on aquatic organisms under realistic worst-case conditions, a macroinvertebrate community of small ditches was sampled at 40 sites of the orchard region Altes Land near Hamburg, Germany. To differentiate between pesticide impact and other variables, the ditches selected for sampling were located at different distances along grassland, unused apple orchards, and orchards managed with integrated and/or organic crop protection methods. Samples of macroinvertebrates were taken on five dates over two years. In addition to biological data, water chemistry and structural parameters were measured. For each sampling site, a potential for exposure was calculated on the basis of the distance of the ditch to the nearest row of trees and the depth and width of the ditch. The neighborhood to either grassland or orchards turned out to have a larger impact on the macroinvertebrate community than the potential for exposure. Therefore, grassland sites were omitted from further evaluation. Remaining sites were grouped into low exposure (sites at unused orchards), medium exposure (distance of 3,5 m [track] between trees and ditch), and high exposure (trees close to the ditch, mean distance , 1.5 m). Principal response curves showed differences in community structure between the three exposure groups over time. Whereas for sites from the high exposure group significant differences from low exposure was observed in all seasons, significant differences between low and medium were observed only occasionally. Effects were less pronounced in samples taken at springtime before the starting pesticide applications, suggesting some community recovery. Species richness was negatively correlated to exposure potential. Isopoda, Eulamellibranchiata, and insects, especially Ephemeroptera, showed a high negative correlation with the potential for pesticide exposure, suggesting that these taxa are sensitive to the pesticide use in the orchards. [source] Effects of lambda-cyhalothrln in two ditch microcosm systems of different trophic statusENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2005Ivo Roessink Abstract The fate and effects of the pyrethroid insecticide lambda-cyhalothrin were compared in mesotrophic (macrophyte-dominated) and eutrophic (phytoplankton-dominated) ditch microcosms (,0.5 m3). Lambda-cyhalothrin was applied three times at one-week intervals at concentrations of 10, 25, 50, 100, and 250 ng/L. The rate of dissipation of lambda-cyhalothrin in the water column of the two types of test systems was similar. After 1 d, only 30% of the amount applied remained in the water phase. Initial, direct effects were observed primarily on arthropod taxa. The most sensitive species was the phantom midge (Chaoborus obscuripes). Threshold levels for slight and transient direct toxic effects were similar (10 ng/L) between types of test systems. At treatment levels of 25 ng/L and higher, apparent population and community responses occurred. At treatments of 100 and 250 ng/L, the rate of recovery of the macroinvertebrate community was lower in the macrophyte-dominated systems, primarily because of a prolonged decline of the amphipod Gammarus pulex. This species occurred at high densities only in the macrophyte-dominated enclosures. Indirect effects (e.g., increase of rotifers and microcrustaceans) were more pronounced in the plankton-dominated test systems, particularly at treatment levels of 25 ng/L and higher. [source] Macroinvertebrate community response to pulse exposure with the insecticide lambda-cyhalothrin using in-stream mesocosmsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2005Lars-Henrik Heckmann Abstract esticides are constantly beingapplied to agricultural catchments, but little is known abouttheir impact onaquatic biota during natural exposure. In the present study, the impact of the pyrethroid lambda-cyhalothrin was studied in an in-stream mesocosm setup. Twice during the summer of 2002, the natural macroinvertebrate community was exposed in situ to a 30-min pulse of lambda-cyhalothrin. Pyrethroid doses were released through a modified drip set with nominal concentrations of 0.10, 1.00, and 10.0 ,g L,1 during the first exposure and 0.05, 0.50, and 5.00 ,g L,1 in the second exposure. Before, during, and after exposure, drifting macroinvertebrates were caught in nets. Quantitative benthic samples were taken both before and on two occasions after exposure. Macroinvertebrate drift increased immediately after the pulse exposure, with total drift being significantly higher at all concentrations. Gammarus pulex, various Ephemeroptera, Leuctra sp., and Simuliidae were some of the taxa showing the most pronounced drift response. Structural change in the community was found only at 5.00 and 10.0 ,g L,1, and recovery occurred within approximately two weeks. The present study may be valuable in assessing extrapolations based on laboratory results as well as in evaluating pyrethroid impact on natural freshwater environments. [source] Ecotoxicologic impacts of agricultural drain water in the Salinas River, California, USAENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2003Brian S. Anderson Abstract The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California (USA). Large areas of this watershed are cultivated year-round in row crops, and previous laboratory studies have demonstrated that acute toxicity of agricultural drain water to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. We investigated chemical contamination and toxicity in waters and sediments in the river downstream of an agricultural drain water input. Ecological impacts of drain water were investigated by using bioassessments of macroinvertebrate community structure. Toxicity identification evaluations were used to characterize chemicals responsible for toxicity. Salinas River water downstream of the agricultural drain was acutely toxic to the cladoceran Ceriodaphnia dubia, and toxicity to C. dubia was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to the amphipod Hyalella azteca, a resident invertebrate. Toxicity identification evaluations (TIEs) conducted on sediment pore water suggested that toxicity to amphipods was due in part to OP pesticides; concentrations of chlorpyrifos in pore water sometimes exceeded the 10-d mean lethal concentration (LC50) for H. azteca. Potentiation of toxicity with addition of the metabolic inhibitor piperonyl butoxide suggested that sediment toxicity also was due to other non,metabolically activated compounds. Macroinvertebrate community structure was highly impacted downstream of the agricultural drain input, and a number of macroinvertebrate community metrics were negatively correlated with combined TUs of chlorpyrifos and diazinon, as well as turbidity associated with the drain water. Some macroinvertebrate metrics were also correlated with bank vegetation cover. This study suggests that pesticide pollution is the likely cause of ecological damage in the Salinas River, and this factor may interact with other stressors associated with agricultural drain water to impact the macroinvertebrate community in the system. [source] A test system to evaluate the susceptibility of Oregon, USA, native stream invertebrates to triclopyr and carbarylENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2001Jennifer L. Peterson Abstract The susceptibility of six indigenous macroinvertebrate species representative of U.S. Pacific Northwest streams (Ameletus sp., Brachycentrus americanus, Calineuria californica, Cinygma sp., Lepidostoma unicolor, Psychoglypha sp. early and late instar) to formulated triclopyr ester (herbicide) and carbaryl (insecticide) was determined using laboratory bioassays. Acute toxicity was expressed as the lethal concentration to 50% (LC50) and 1% (LC1) of the test population based on a 96-h exposure duration. Carbaryl was found to be 1,000 times more toxic than triclopyr for all the organisms tested. The LC1 values (7.5, 28.8, 9.0, 3.0, 9.5, 14.8, 33.8 ,g/L, respectively, for carbaryl and 1.8, 3.9, 4.0, 4.2, 29.0, 16.1 mg/L, respectively, for triclopyr) were used in the calculation of hazardous concentration to 5% of the stream macroinvertebrate community (HC5) based on the lower 95% confidence limit (HC5/95). The hazardous concentration (HC5/95) for triclopyr was 0.11 mg/L and for carbaryl ranged from 0.43 to 0.66 ,g/L, respectively. Triclopyr and carbaryl symptomology were analyzed for two organisms, C. californica and Cinygma sp. Carbaryl symptomology included knockdown and moribund states with severity and time of appearance being a function of dose. In triclopyr poisoning, death occurred suddenly with little or no symptomology. Time to 50% mortality (LT50) values were consistently higher for C. californica than for Cinygma sp. exposed to both chemicals at similar concentrations. [source] Using geophysical information to define benthic habitats in a large riverFRESHWATER BIOLOGY, Issue 1 2006DAVID L. STRAYER Summary 1. Most attempts to describe the distribution of benthic macroinvertebrates in large rivers have used local (grab-scale) assessments of environmental conditions, and have had limited ability to account for spatial variation in macroinvertebrate populations. 2. We tested the ability of a habitat classification system based on multibeam bathymetry, side-scan sonar, and chirp sub-bottom seismics to identify large-scale habitat units (,facies') and account for macroinvertebrate distribution in the Hudson River, a large tidal river in eastern New York. 3. Partial linear regression analysis showed that sediment facies were generally more effective than local or positional variables in explaining various aspects of the macroinvertebrate community (community structure, density of all invertebrates, density of fish forage, density of a pest species ,Dreissena polymorpha). 4. Large-scale habitats may be effective at explaining macroinvertebrate distributions in large rivers because they are integrative and describe habitat at the spatial scales of dominant controlling processes. [source] |