Home About us Contact | |||
Machinery
Kinds of Machinery Terms modified by Machinery Selected AbstractsProteins of the Transcription MachineryFEBS JOURNAL, Issue 2005Article first published online: 20 JUN 200 First page of article [source] External cause-specific summaries of occupational fatal injuries.AMERICAN JOURNAL OF INDUSTRIAL MEDICINE, Issue 3 2003Part I: An analysis of rates Abstract Background Industries and occupations vary with respect to the incidence of fatal injuries and their causes. Methods Fatalities from the National Traumatic Occupational Fatality database (years 1983,1994) serve as the basis for examining external cause of death code specific rates. Industries and occupations are compared with respect to rate and frequency of fatal injuries. In addition, external causes of injury (E-codes) are examined across all industries and occupations as well as within industries and occupations to evaluate which events would be identified by frequency ordered comparisons versus injury rate ordered comparisons. Results Machinery, electric current, homicide, falls, and transportation-related events are identified by high frequency and rate of occurrence. Conclusions The external cause categories of homicide, machinery-related, motor-vehicle-related, electric current, and falls, account for over one-half of all occupational fatal injuries. Targeted interventions in homicide may be especially warranted in sales and service occupations and in the retail trade and services industries. In addition, younger workers might be targeted for special interventions designed to identify hazardous practices, procedures, and solutions to reduce fatalities associated with electrocution or falls from buildings. Am. J. Ind. Med. 43:237,250, 2003. Published 2003 Wiley-Liss, Inc. [source] External cause-specific summaries of occupational fatal injuries.AMERICAN JOURNAL OF INDUSTRIAL MEDICINE, Issue 3 2003Part II: An analysis of years of potential life lost Abstract Background Fatal injury surveillance data provide an opportunity to assess the impact of occupational injuries and may indicate which industries or occupations are appreciably more hazardous than others, and thus should be given priority in public health intervention. Methods Fatalities from the National Traumatic Occupational Fatality surveillance system served as the basis for examining external cause (E-code) specific impact summaries. Years of potential life lost (YPLL) were calculated for fatal injuries in the years 1983,1994. Industries and occupations were compared with respect to frequency of fatal injuries. In addition, injuries in categories of external causes are examined across all industries and occupations. Results Machinery, electric current, homicide, falls, and transportation-related are the external cause groups highlighted by high frequency/rate of occurrence. Electric current event groups are also characterized by high average YPLL. Poisoning, conflagration, and lightning were also identified in several occupations as having high associated average YPLL. Conclusions The external-cause-specific analysis of average YPLL identified industries and occupations where, on average, younger workers were dying in fatal injuries. Noteworthy in this assessment were homicides and falls. The YPLL measure coupled with more commonly employed indices (e.g., rates) may provide a fuller description of the impact of occupational fatal injuries. Am. J. Ind. Med. 43:251,261, 2003. Published 2003 Wiley-Liss, Inc. [source] MI 6's Requirements Directorate: Integrating Intelligence into the Machinery of British Central GovernmentPUBLIC ADMINISTRATION, Issue 1 2000Philip H.J. DaviesArticle first published online: 17 DEC 200 The following article examines the relationship between the British Secret Intelli-gence Service (SIS, a.k.a. MI 6) and the machinery of central government, particularly departments of state and other agencies which employ information generated by the SIS. It is argued the main link between the SIS and its consumers in British government is the SIS's requirements ,side', embodied throughout most of the post-war era in the form of a Requirements Directorate. The article argues that the Requirements mechanism operates as a line of communication between the SIS and its consumers separate from the Cabinet Office Joint Intelligence Organisation (JIO), although there is overlap and interdependency between the two architectures. This discussion traces the development of the ,requirements side' from the interwar period up to the post-Cold War era using information from archival sources and a programme of interviews with former UK intelligence officials. It is further argued that the structure and process of the SIS ,requirements side' has developed and changed as a consequence of changes in the structure of demand in the machinery of British government, including adapting to the increasingly central role of the JIO. However, despite that increasingly central role of the JIO, the ,requirements side' has continued to serve as the first point of contact between the SIS and its customers in Whitehall. [source] Japanese Foreign Direct Investment in Electrical Machinery and Appliances in the United States: A Combined Industrial Organization and Location Theory ApproachASIAN ECONOMIC JOURNAL, Issue 3 2000Jong-Il Choe We analyse the effects of both ownership and location advantages on the size of foreign direct investment, by combining industrial organization and location theory approaches. The estimated results employing a truncated distribution model show that the parent company's managerial resources and the external economies in a located region between them determine the FDI size of Japanese electrical machinery and appliances firms. This result suggests that empirical studies, applying only the industrial organization theory approach, need to be complemented by the location theory approach. [source] Production of the Tubulin Destabilizer Disorazol in Sorangium cellulosum: Biosynthetic Machinery and Regulatory GenesCHEMBIOCHEM, Issue 7 2005Maren Kopp Dipl.-Pharm. Abstract Myxobacteria show a high potential for the production of natural compounds that exhibit a wide variety of antibiotic, antifungal, and cytotoxic activities.1,,2 The genus Sorangium is of special biotechnological interest because it produces almost half of the secondary metabolites isolated from these microorganisms. We describe a transposon-mutagenesis approach to identifying the disorazol biosynthetic gene cluster in Sorangium cellulosum So ce12, a producer of multiple natural products. In addition to the highly effective disorazol-type tubulin destabilizers,3,5 S. cellulosum So ce12 produces sorangicins, potent eubacterial RNA polymerase inhibitors,6 bactericidal sorangiolides, and the antifungal chivosazoles.7,,8 To obtain a transposon library of sufficient size suitable for the identification of the presumed biosynthetic gene clusters, an efficient transformation method was developed. We present here the first electroporation protocol for a strain of the genus Sorangium. The transposon library was screened for disorazol-negative mutants. This approach led to the identification of the corresponding trans-acyltransferase core biosynthetic gene cluster together with a region in the chromosome that is likely to be involved in disorazol biosynthesis. A third region in the genome harbors another gene that is presumed to be involved in the regulation of disorazol production. A detailed analysis of the biosynthetic and regulatory genes is presented in this paper. [source] Connecting the dots: trafficking of neurotrophins, lectins and diverse pathogens by binding to the neurotrophin receptor p75NTREUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2003Rafal Butowt Abstract The common receptor for neurotrophins, p75, has important roles in internalization and trafficking of neurotrophins along axons. Recent studies show that an astonishing array of proteins, including lectins, pathogens and neurotoxins, bind the p75 receptor, suggesting that they can hijack and utilize this receptor for trafficking between neuronal populations within the nervous system. Such pathogens include the neurologically important rabies viruses, prion proteins, ,-amyloid and possibly tetanus toxin. These proteins may hijack existing transport machineries designed to traffick neurotrophins, thus allowing the infiltration and distribution of pathogens and toxins among vulnerable neuronal populations with devastating effects, as seen in rabies, prion encephalopathies, Alzheimer's disease and tetanic muscle spasm. The discovery of an entry and transport machinery that is potentially shared between pathogens and neurotrophins sheds light ono trafficking systems in the nervous system and may assist the design of novel therapeutic avenues that prevent or slow the progression of diverse chronic and acute neurological disorders. [source] Mitochondrial preprotein translocases as dynamic molecular machinesFEMS YEAST RESEARCH, Issue 6 2006Martin Van Der Laan Abstract Proteomic studies have demonstrated that yeast mitochondria contain roughly 1000 different proteins. Only eight of these proteins are encoded by the mitochondrial genome and are synthesized on mitochondrial ribosomes. The remaining 99% of mitochondrial precursors are encoded within the nuclear genome and after their synthesis on cytosolic ribosomes must be imported into the organelle. Targeting of these proteins to mitochondria and their import into one of the four mitochondrial subcompartments , outer membrane, intermembrane space (IMS), inner membrane and matrix , requires various membrane-embedded protein translocases, as well as numerous chaperones and cochaperones in the aqueous compartments. During the last years, several novel protein components involved in the import and assembly of mitochondrial proteins have been identified. The picture that emerges from these exciting new findings is that of highly dynamic import machineries, rather than of regulated, but static protein complexes. In this review, we will give an overview on the recent progress in our understanding of mitochondrial protein import. We will focus on the presequence translocase of the inner mitochondrial membrane, the TIM23 complex and the presequence translocase-associated motor, the PAM complex. These two molecular machineries mediate the multistep import of preproteins with cleavable N-terminal signal sequences into the matrix or inner membrane of mitochondria. [source] Structural basis of target recognition by Atg8/LC3 during selective autophagyGENES TO CELLS, Issue 12 2008Nobuo N. Noda Autophagy is a non-selective bulk degradation process in which isolation membranes enclose a portion of cytoplasm to form double-membrane vesicles, called autophagosomes, and deliver their inner constituents to the lytic compartments. Recent studies have also shed light on another mode of autophagy that selectively degrades various targets. Yeast Atg8 and its mammalian homologue LC3 are ubiquitin-like modifiers that are localized on isolation membranes and play crucial roles in the formation of autophagosomes. These proteins are also involved in selective incorporation of specific cargo molecules into autophagosomes, in which Atg8 and LC3 interact with Atg19 and p62, receptor proteins for vacuolar enzymes and disease-related protein aggregates, respectively. Using X-ray crystallography and NMR, we herein report the structural basis for Atg8,Atg19 and LC3,p62 interactions. Remarkably, Atg8 and LC3 were shown to interact with Atg19 and p62, respectively, in a quite similar manner: they recognized the side-chains of Trp and Leu in a four-amino acid motif, WXXL, in Atg19 and p62 using hydrophobic pockets conserved among Atg8 homologues. Together with mutational analyses, our results show the fundamental mechanism that allows Atg8 homologues, in association with WXXL-containing proteins, to capture specific cargo molecules, thereby endowing isolation membranes and/or their assembly machineries with target selectivity. [source] Progress toward liver-based gene therapyHEPATOLOGY RESEARCH, Issue 4 2009Takeshi Suda The liver is involved in the synthesis of serum proteins, regulation of metabolism and maintenance of homeostasis and provides a variety of opportunities for gene therapy. The enriched vasculature and blood circulation, fenestrated endothelium, abundant receptors on the plasma membranes of the liver cells, and effective transcription and translation machineries in the hepatocytes are some unique features that have been explored for delivery, and functional analysis, of genetic sequences in the liver. Both viral and non-viral methods have been developed for effective gene delivery and liver-based gene therapy. This review describes the fundamentals of gene delivery, and the preclinical and clinical progress that has been made toward gene therapy using the liver as a target. [source] A multidegree-of-freedom manipulator for curtain-wall installationJOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 5 2006Chang Soo Han Recently, the trend in architectural forms has been towards larger and taller buildings. Building materials are, therefore, also becoming larger and heavier. Typical construction machineries are not adequate for handling such materials, and most construction works are still managed by a human operator. Construction processes are, therefore, fraught with a number of problems, including frequent accidents, high construction cost, and heterogeneous construction quality depending on the experience of the workers. Automation has been introduced at various sites to address these construction problems. In this paper, the process of a curtain-wall installation in a skyscraper is analyzed, and the prototype of a construction robot for curtain-wall installation (CRCWI) is proposed. Use of the proposed CRCWI can reduce the need for manpower and the construction period and cost, and can assure safety in the curtain-wall construction site. The performance of the proposed CRCWI was verified with a real application test in a skyscraper construction site. © 2006 Wiley Periodicals, Inc. [source] A role of local signalling in the establishment and maintenance of the asymmetrical architecture of a neuronJOURNAL OF NEUROCHEMISTRY, Issue 3 2007Eun-Mi Hur Abstract Significant progress has been made in the identification of intrinsic and extrinsic factors involved in the development of nervous system. It is remarkable that the establishment and maintenance of the asymmetrical architecture of a neuron is coordinated by a limited repertoire of signalling machineries. However, the details of signalling mechanisms responsible for creating specificity and diversity required for proper development of the nervous system remain largely to be investigated. An emerging body of evidence suggests that specificity and diversity can be achieved by differential regulation of signalling components at distinct subcelluar localizations. Many aspects of neuronal polarization and morphogenesis are attributed to localized signalling. Further diversity and specificity of receptor signalling can be achieved by the regulation of molecules outside the cell. Recent evidence suggests that extracellular matrix molecules are essential extrinsic cues that function to foster the growth of neurons. Therefore, it is important to understand where the signalling machineries are activated and how they are combined with other factors in order to understand the molecular mechanism underlying neuronal development. [source] Protein trafficking mechanisms associated with neurite outgrowth and polarized sorting in neuronsJOURNAL OF NEUROCHEMISTRY, Issue 5 2001Bor Luen Tang Neuronal differentiation in vitro and in vivo involves coordinated changes in the cellular cytoskeleton and protein trafficking processes. I review here recent progress in our understanding of the membrane trafficking aspects of neurite outgrowth of neurons in culture and selective microtubule-based polarized sorting in fully polarized neurons, focusing on the involvement of some key molecules. Early neurite outgrowth appears to involve the protein trafficking machineries that are responsible for constitutive trans -Golgi network (TGN) to plasma membrane exocytosis, utilizing transport carrier generation mechanisms, SNARE proteins, Rab proteins and tethering mechanisms that are also found in non-neuronal cells. This vectorial TGN-plasma membrane traffic is directed towards several neurites, but can be switch to concentrate on the growth of a single axon. In a mature neuron, polarized targeting to the specific axonal and dendritic domains appears to involve selective microtubule-based mechanisms, utilizing motor proteins capable of distinguishing microtubule tracks to different destinations. The apparent gaps in our knowledge of these related protein transport processes will be highlighted. [source] Identification of distinct and common gene expression changes after oxidative stress and gamma and ultraviolet radiation,MOLECULAR CARCINOGENESIS, Issue 2 2003Alexandra N. Heinloth Abstract The human genome is exposed to many different kinds of DNA-damaging agents. While most damage is detected and repaired through complex damage recognition and repair machineries, some damage has the potential to escape these mechanisms. Unrepaired DNA damage can give rise to alterations and mutations in the genome in an individual cell, which can result in malignant transformation, especially when critical genes are deregulated. In this study, we investigated gene expression changes in response to oxidative stress, gamma (,) radiation, and ultraviolet (UV) radiation and their potential implications in cancer development. Doses were selected for each of the three treatments, based on their ability to cause a similar G1 checkpoint induction and slow down in early S-phase progression, as reflected by a comparable reduction in cyclin E,associated kinase activity of at least 75% in logarithmically growing human dermal diploid fibroblasts. To investigate gene expression changes, logarithmically growing dermal diploid fibroblasts were exposed to either , radiation (5 Gy), oxidative stress (75 ,M of tert-butyl hydroperoxide (t -butyl-OOH)), or UV radiation (UVC) (7.5 J/m2) and RNA was harvested 6 h after treatment. Gene expression was analyzed using the NIEHS Human ToxChip 2.0 with approximately 1901 cDNA clones representing known genes and expressed sequence tags (ESTs). We were able to identify common and distinct responses in dermal diploid fibroblasts to the three different stimuli used. Within our analysis, gene expression profiles in response to , radiation and oxidative stress appeared to be more similar than profiles expressed after UV radiation. Interestingly, equivalent cyclin E,associated kinase activity reduction with all the three treatments was associated with greater transcriptional changes after UV radiation than after , radiation and oxidative stress. While samples treated with UV radiation displayed modulations of their mitogen activated protein kinase (MAPK) pathway, , radiation had its major influence on cell-cycle progression in S-phase and mitosis. In addition, cell cultures from different individuals displayed significant differences in their gene expression responses to DNA damage. Published 2003 Wiley-Liss, Inc. [source] The cell cycle of SulfolobusMOLECULAR MICROBIOLOGY, Issue 3 2007Rolf Bernander Summary Much of the current information about the archaeal cell cycle has been generated through studies of the genus Sulfolobus. The overall organization of the cell cycle in these species is well understood, and information about the regulatory principles that govern cell cycle progression is rapidly accumulating. Exciting progress regarding the control and molecular details of the chromosome replication process is evident, and the first insights into the elusive crenarchaeal mitosis and cytokinesis machineries are within reach. [source] The effects of dynein inhibition on the autophagic pathway in glioma cellsNEUROPATHOLOGY, Issue 1 2010Midori Yamamoto Autophagy has multiple physiological functions, including protein degradation, organelle turnover and the response of cancer cells to chemotherapy. Because autophagy is implicated in a number of diseases, a better understanding of the molecular mechanisms of autophagy is needed for therapeutic purposes, including rational design of drugs. Autophagy is a process that occurs in several steps as follows: formation of phagophores, formation of mature autophagosomes, targeting and trafficking of autophagosomes to lysosomes, formation of autolysosomes by fusion between autophagosomes and lysosomes, and finally, degradation of the autophagic bodies within the lysosomes. It has been suggested that autophagosome formation is driven by molecular motor machineries, and, once formed, autophagosomes need to reach lysosomes, enriched perinuclearly around the microtubule-organizing centre. While it is recognized that all these steps require the cytoskeletal network, little is known about the mechanisms involved. Here we assessed the role of cytoplasmic dynein in the autophagic process of human glioma cells to determine the part played by dynein in autophagy. We observed that chemical interference with dynein function led to an accumulation of autophagosomes, suggesting impaired autophagosome-lysosome fusion. In contrast, we found that overexpression of dynamitin, which disrupts the dynein complex, reduced the number of autophagosomes, suggesting the requirement of the dynein-dynactin interaction in the early membrane trafficking step in autophagosome formation. These results suggest that dynein plays a variety of crucial roles during the autophagic process in glioma cells. [source] Evolution of Protein Targeting into "Complex" Plastids: The "Secretory Transport Hypothesis"PLANT BIOLOGY, Issue 4 2003O. Kilian Abstract: In algae different types of plastids are known, which vary in pigment content and ultrastructure, providing an opportunity to study their evolutionary origin. One interesting feature is the number of envelope membranes surrounding the plastids. Red algae, green algae and glaucophytes have plastids with two membranes. They are thought to originate from a primary endocytobiosis event, a process in which a prokaryotic cyanobacterium was engulfed by a eukaryotic host cell and transformed into a plastid. Several other algal groups, like euglenophytes and heterokont algae (diatoms, brown algae, etc.), have plastids with three or four surrounding membranes, respectively, probably reflecting the evolution of these organisms by so-called secondary endocytobiosis, which is the uptake of a eukaryotic alga by a eukaryotic host cell. A prerequisite for the successful establishment of primary or secondary endocytobiosis must be the development of suitable protein targeting machineries to allow the transport of nucleus-encoded plastid proteins across the various plastid envelope membranes. Here, we discuss the possible evolution of such protein transport systems. We propose that the secretory system of the respective host cell might have been the essential tool to establish protein transport into primary as well as into secondary plastids. [source] Molecular anatomy of a speckleTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 7 2006Lisa L. Hall Abstract Direct localization of specific genes, RNAs, and proteins has allowed the dissection of individual nuclear speckles in relation to the molecular biology of gene expression. Nuclear speckles (aka SC35 domains) are essentially ubiquitous structures enriched for most pre-mRNA metabolic factors, yet their relationship to gene expression has been poorly understood. Analyses of specific genes and their spliced or mature mRNA strongly support that SC35 domains are hubs of activity, not stores of inert factors detached from gene expression. We propose that SC35 domains are hubs that spatially link expression of specific pre-mRNAs to rapid recycling of copious RNA metabolic complexes, thereby facilitating expression of many highly active genes. In addition to increasing the efficiency of each step, sequential steps in gene expression are structurally integrated at each SC35 domain, consistent with other evidence that the biochemical machineries for transcription, splicing, and mRNA export are coupled. Transcription and splicing are subcompartmentalized at the periphery, with largely spliced mRNA entering the domain prior to export. In addition, new findings presented here begin to illuminate the structural underpinnings of a speckle by defining specific perturbations of phosphorylation that promote disassembly or assembly of an SC35 domain in relation to other components. Results thus far are consistent with the SC35 spliceosome assembly factor as an integral structural component. Conditions that disperse SC35 also disperse poly(A) RNA, whereas the splicing factor ASF/SF2 can be dispersed under conditions in which SC35 or SRm300 remain as intact components of a core domain. Anat Rec Part A, 288A:664,675, 2006. © 2006 Wiley-Liss, Inc. [source] Protein Targeting into Secondary Plastids,THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 1 2009KATHRIN BOLTE ABSTRACT. Most of the coding capacity of primary plastids is reserved for expressing some central components of the photosynthesis machinery and the translation apparatus. Thus, for the bulk of biochemical and cell biological reactions performed within the primary plastids, many nucleus-encoded components have to be transported posttranslationally into the organelle. The same is true for plastids surrounded by more than two membranes, where additional cellular compartments have to be supplied with nucleus-encoded proteins, leading to a corresponding increase in complexity of topogenic signals, transport and sorting machineries. In this review, we summarize recent progress in elucidating protein transport across up to five plastid membranes in plastids evolved in secondary endosymbiosis. Current data indicate that the mechanisms for protein transport across multiple membranes have evolved by altering pre-existing ones to new requirements in secondary plastids. [source] Homologous protein import machineries in chloroplasts and cyanelles,THE PLANT JOURNAL, Issue 4 2005Jürgen M. Steiner Summary The cyanelles of the glaucocystophyte alga Cyanophora paradoxa resemble endosymbiotic cyanobacteria, especially in the presence of a peptidoglycan wall between the inner and outer envelope membranes. However, it is now clear that cyanelles are in fact primitive plastids. Phylogenetic analyses of plastid, nuclear and mitochondrial genes support a single primary endosymbiotic event. In this scenario, cyanelles and all other plastid types are derived from an ancestral photosynthetic organelle combining the high gene content of rhodoplasts and the peptidoglycan wall of cyanelles. This means that the import apparatuses of all primary plastids, i.e. those from glaucocystophytes, red algae, green algae and higher plants, should be homologous. If this is the case, then transit sequences should be similar and heterologous import experiments feasible. Thus far, heterologous in vitro import has been shown in one direction only: precursors from C. paradoxa were imported into isolated pea or spinach chloroplasts. Cyanelle transit sequences differ from chloroplast stroma targeting peptides in containing in their N-terminal domain an invariant phenylalanine residue which is shown here to be crucial for import. In addition, we now demonstrate that heterologous precursors are readily imported into isolated cyanelles, provided that the essential phenylalanine residue is engineered into the N-terminal part of chloroplast transit peptides. The cyanelle and likely also the rhodoplast import apparatus can be envisaged as prototypes with a single receptor/channel showing this requirement for N-terminal phenylalanine. In chloroplasts, multiple receptors with overlapping and less stringent specificities have evolved, explaining the efficient heterologous import of native precursors from C. paradoxa. [source] Trans -splicing of organelle introns , a detour to continuous RNAsBIOESSAYS, Issue 9 2009Stephanie Glanz Abstract In eukaryotes, RNA trans -splicing is an important RNA-processing form for the end-to-end ligation of primary transcripts that are derived from separately transcribed exons. So far, three different categories of RNA trans -splicing have been found in organisms as diverse as algae to man. Here, we review one of these categories: the trans -splicing of discontinuous group II introns, which occurs in chloroplasts and mitochondria of lower eukaryotes and plants. Trans -spliced exons can be predicted from DNA sequences derived from a large number of sequenced organelle genomes. Further molecular genetic analysis of mutants has unravelled proteins, some of which being part of high-molecular-weight complexes that promote the splicing process. Based on data derived from the alga Chlamydomonas reinhardtii, a model is provided which defines the composition of an organelle spliceosome. This will have a general relevance for understanding the function of RNA-processing machineries in eukaryotic organelles. [source] Characterization and astrocytic modulation of system L transporters in brain microvasculature endothelial cellsCELL BIOCHEMISTRY AND FUNCTION, Issue 3 2008Yadollah Omidi Abstract Brain trafficking of amino acids is mainly mediated by amino acids transport machineries of the blood,brain barrier (BBB), where astrocytes play a key maintenance role. However, little is known about astrocytes impacts on such transport systems, in particular system L that consists of large and small neutral amino acids (NAAs) transporters, that is, LAT1/4F2hc and LAT2/4F2hc, respectively. In the current investigation, functionality and expression of system L were studied in the immortalized mouse brain microvascular endothelial b.End3 cells cocultured with astrocytes or treated with astrocyte-conditioned media (ACM). LAT2/4F2hc mediated luminal uptake of L -phenylalanine and L -leucine resulted in significantly decreased affinity of system L in b.End3 cells treated with ACM, while LAT2/4F2hc mediated luminal uptake of L -alanine remained unchanged. Gene expression analysis revealed marked upregulation of LAT1 and 4F2hc, but downregulation of LAT2 in b.End3 cells cultured with ACM. The basal to apical transport of L -phenylalanine and L -alanine appeared to be significantly greater than that of the apical to basal direction in b.End3 cells indicating an efflux functionality of system L. No marked influence was observed for transport of L -phenylalanine in b.End3 cells cocultured with astrocytes, while a slight decrease was seen for L -alanine in the basal to apical direction. Based on our findings, we propose that system L functions as influx and/or efflux transport machinery displaying a greater propensity for the outward transport of large and small NAAs. Astrocytes appeared to modulate the transcriptic expression and uptake functionalities of system L, but not the transport activities. Copyright © 2008 John Wiley & Sons, Ltd. [source] Life, information, entropy, and time: Vehicles for semantic inheritanceCOMPLEXITY, Issue 1 2007Antony R. Crofts Abstract Attempts to understand how information content can be included in an accounting of the energy flux of the biosphere have led to the conclusion that, in information transmission, one component, the semantic content, or "the meaning of the message," adds no thermodynamic burden over and above costs arising from coding, transmission and translation. In biology, semantic content has two major roles. For all life forms, the message of the genotype encoded in DNA specifies the phenotype, and hence the organism that is tested against the real world through the mechanisms of Darwinian evolution. For human beings, communication through language and similar abstractions provides an additional supra-phenotypic vehicle for semantic inheritance, which supports the cultural heritages around which civilizations revolve. The following three postulates provide the basis for discussion of a number of themes that demonstrate some important consequences. (i) Information transmission through either pathway has thermodynamic components associated with data storage and transmission. (ii) The semantic content adds no additional thermodynamic cost. (iii) For all semantic exchange, meaning is accessible only through translation and interpretation, and has a value only in context. (1) For both pathways of semantic inheritance, translational and copying machineries are imperfect. As a consequence both pathways are subject to mutation and to evolutionary pressure by selection. Recognition of semantic content as a common component allows an understanding of the relationship between genes and memes, and a reformulation of Universal Darwinism. (2) The emergent properties of life are dependent on a processing of semantic content. The translational steps allow amplification in complexity through combinatorial possibilities in space and time. Amplification depends on the increased potential for complexity opened by 3D interaction specificity of proteins, and on the selection of useful variants by evolution. The initial interpretational steps include protein synthesis, molecular recognition, and catalytic potential that facilitate structural and functional roles. Combinatorial possibilities are extended through interactions of increasing complexity in the temporal dimension. (3) All living things show a behavior that indicates awareness of time, or chronognosis. The ,4 billion years of biological evolution have given rise to forms with increasing sophistication in sensory adaptation. This has been linked to the development of an increasing chronognostic range, and an associated increase in combinatorial complexity. (4) Development of a modern human phenotype and the ability to communicate through language, led to the development of archival storage, and invention of the basic skills, institutions and mechanisms that allowed the evolution of modern civilizations. Combinatorial amplification at the supra-phenotypical level arose from the invention of syntax, grammar, numbers, and the subsequent developments of abstraction in writing, algorithms, etc. The translational machineries of the human mind, the "mutation" of ideas therein, and the "conversations" of our social intercourse, have allowed a limited set of symbolic descriptors to evolve into an exponentially expanding semantic heritage. (5) The three postulates above open interesting epistemological questions. An understanding of topics such dualism, the élan vital, the status of hypothesis in science, memetics, the nature of consciousness, the role of semantic processing in the survival of societies, and Popper's three worlds, require recognition of an insubstantial component. By recognizing a necessary linkage between semantic content and a physical machinery, we can bring these perennial problems into the framework of a realistic philosophy. It is suggested, following Popper, that the ,4 billion years of evolution of the biosphere represents an exploration of the nature of reality at the physicochemical level, which, together with the conscious extension of this exploration through science and culture, provides a firm epistemological underpinning for such a philosophy. © 2007 Wiley Periodicals, Inc. Complexity, 2007 [source] Angiotensin II enhances the afferent arteriolar response to adenosine through increases in cytosolic calciumACTA PHYSIOLOGICA, Issue 4 2009E. Y. Lai Abstract Aims:, Angiotensin II (Ang II) is a strong renal vasoconstrictor and modulates the tubuloglomerular feedback (TGF). We hypothesized that Ang II at low concentrations enhances the vasoconstrictor effect of adenosine (Ado), the mediator of TGF. Methods:, Afferent arterioles of mice were isolated and perfused, and both isotonic contractions and cytosolic calcium transients were measured. Results:, Bolus application of Ang II (10,12 and 10,10 m) induced negligible vasoconstrictions, while Ang II at 10,8 m reduced diameters by 35%. Ang II at 10,12, 10,10 and 10,8 m clearly enhanced the arteriolar response to cumulative applications of Ado (10,11 to 10,4 m). Ado application increased the cytosolic calcium concentrations in the vascular smooth muscle, which were higher at 10,5 m than at 10,8 m. Ang II (10,11 to 10,6 m) also induced concentration-dependent calcium transients, which were attenuated by AT1 receptor inhibition. Simultaneously applied Ang II (10,10 m) additively enhanced the calcium transients induced by 10,8 and 10,5 m Ado. The transients were partly inhibited by AT1 or A1 receptor antagonists, but not significantly by A2 receptor antagonists. Conclusion:, A low dose of Ang II enhances Ado-induced constrictions, partly via AT1 receptor-mediated calcium increase. Ado increases intracellular calcium by acting on A1 but not A2 receptors. The potentiating effect of Ang II on Ado-induced arteriolar vasoconstrictions may involve calcium sensitization of the contractile machinery, as Ang II only additively increased cytosolic calcium concentrations, while its effect on the arteriolar constriction was more than additive. The potentiating effect of Ang II might contribute to the resetting of TGF. [source] LKB1 and AMP-activated protein kinase control of mTOR signalling and growthACTA PHYSIOLOGICA, Issue 1 2009R. J. Shaw Abstract The AMP-activated serine/threonine protein kinase (AMPK) is a sensor of cellular energy status found in all eukaryotes that is activated under conditions of low intracellular ATP following stresses such as nutrient deprivation or hypoxia. In the past 5 years, work from a large number of laboratories has revealed that one of the major downstream signalling pathways regulated by AMPK is the mammalian target-of-rapamycin [mammalian target of rapamycin (mTOR) pathway]. Interestingly, like AMPK, the mTOR serine/threonine kinase plays key roles not only in growth control and cell proliferation but also in metabolism. Recent work has revealed that across eukaryotes mTOR orthologues are found in two biochemically distinct complexes and only one of those complexes (mTORC1 in mammals) is acutely sensitive to rapamycin and regulated by nutrients and AMPK. Many details of the molecular mechanism by which AMPK inhibits mTORC1 signalling have also been decoded in the past 5 years. AMPK directly phosphorylates at least two proteins to induce rapid suppression of mTORC1 activity, the TSC2 tumour suppressor and the critical mTORC1 binding subunit raptor. Here we explore the molecular connections between AMPK and mTOR signalling pathways and examine the physiological processes in which AMPK regulation of mTOR is critical for growth or metabolic control. The functional conservation of AMPK and TOR in all eukaryotes, and the sequence conservation around the AMPK phosphorylation sites in raptor across all eukaryotes examined suggest that this represents a fundamental cell growth module connecting nutrient status to the cell growth machinery. These findings have broad implications for the control of cell growth by nutrients in a number of cellular and organismal contexts. [source] Human skeletal muscle cell differentiation is associated with changes in myogenic markers and enhanced insulin-mediated MAPK and PKB phosphorylationACTA PHYSIOLOGICA, Issue 4 2004L. Al-Khalili Abstract Aim:, We hypothesized that myogenic differentiation of HSMC would yield a more insulin responsive phenotype. Methods:, We assessed expression of several proteins involved in insulin action or myogenesis during differentiation of primary human skeletal muscle cultures (HSMC). Results:, Differentiation increased creatine kinase activity and expression of desmin and myocyte enhancer factor (MEF)2C. No change in expression was observed for big mitogen-activated protein kinase (BMK1/ERK5), MEF2A, insulin receptor (IR), hexokinase II, and IR substrates 1 and 2, while expression of glycogen synthase, extracellular signal-regulated kinase 1 and 2 (ERK1/2 MAP kinase) and the insulin responsive aminopeptidase increased after differentiation. In contrast to protein kinase B (PKB)a, expression of (PKB)b increased, with differentiation. Both basal and insulin-stimulated PI 3-kinase activity increased with differentiation. Insulin-mediated phosphorylation of PKB and ERK1/2 MAP kinase increased after differentiation. Conclusion:, Components of the insulin-signalling machinery are expressed in myoblast and myotube HSMC; however, insulin responsiveness to PKB and ERK MAP kinase phosphorylation increases with differentiation. [source] Actin on DNA,An ancient and dynamic relationship,CYTOSKELETON, Issue 8 2010Kari-Pekka Skarp Abstract In the cytoplasm of eukaryotic cells the coordinated assembly of actin filaments drives essential cell biological processes, such as cell migration. The discovery of prokaryotic actin homologues, as well as the appreciation of the existence of nuclear actin, have expanded the scope by which the actin family is utilized in different cell types. In bacteria, actin has been implicated in DNA movement tasks, while the connection with the RNA polymerase machinery appears to exist in both prokaryotes and eukaryotes. Within the nucleus, actin has further been shown to play a role in chromatin remodeling and RNA processing, possibly acting to link these to transcription, thereby facilitating the gene expression process. The molecular mechanism by which actin exerts these newly discovered functions is still unclear, because while polymer formation seems to be required in bacteria, these species lack conventional actin-binding proteins to regulate the process. Furthermore, although the nucleus contains a plethora of actin-regulating factors, the polymerization status of actin within this compartment still remains unclear. General theme, however, seems to be actin's ability to interact with numerous binding partners. A common feature to the novel modes of actin utilization is the connection between actin and DNA, and here we aim to review the recent literature to explore how this connection is exploited in different contexts. [source] Susceptibility of isolated myofibrils to in vitro glutathionylation: Potential relevance to muscle functions,CYTOSKELETON, Issue 2 2010Chiara Passarelli Abstract In this study we investigated the molecular mechanism of glutathionylation on isolated human cardiac myofibrils using several pro-glutathionylating agents. Total glutathionylated proteins appeared significantly enhanced with all the pro-oxidants used. The increase was completely reversed by the addition of a reducing agent, demonstrating that glutathione binding occurs by a disulfide and that the process is reversible. A sensitive target of glutathionylation was ,-actin, showing a different reactivity to the several pro-glutathionylating agents by ELISA. Noteworthy, myosin although highly sensitive to the in vitro glutathionylation does not represent the primary glutathionylation target in isolated myofibrils. Light scattering measurements of the glutathionylated ,-actin showed a slower polymerisation compared to the non-glutathionylated protein and force development was depressed after glutathionylation, when the myofibrils were mounted in a force recording apparatus. Interestingly, confocal laser scanning microscopy of cardiac cryosections indicated, for the first time, the constitutive glutathionylation of ,-cardiac actin in human heart. Due to the critical location of ,-actin in the contractile machinery and to its susceptibility to the oxidative modifications, glutathionylation may represent a mechanism for modulating sarcomere assembly and muscle functionality under patho-physiological conditions in vivo. © 2009 Wiley-Liss, Inc. [source] In vivo analysis of MT-based vesicle transport by confocal reflection microscopyCYTOSKELETON, Issue 2 2009Imre Gáspár Abstract The use of confocal reflection microscopy (CRM) for the in vivo analysis of microtubule (MT) mediated transport of lipid droplets in the developing Drosophila egg primordia is described here. The developing Drosophila oocytes are ideal objects to study MT-mediated transport in vivo: transport of e.g. the lipid droplets can be conveniently, selectively and sensitively monitored through CRM and the egg primordia are readily available for physical, chemical and/or genetic manipulations. CRM is a non-destructive way to follow vesicle movement and allows high frame rate image recording. When combined with fluorescence imaging, CRM offers simultaneous visualization of the cargo and the protein(s) of interest, i.e. a motor or a cargo adapter, thus allowing a better understanding of MT-mediated transport and spatiotemporal coordination of the transport machinery. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source] Evolution and persistence of the ciliumCYTOSKELETON, Issue 12 2007Peter Satir Abstract The origin of cilia, a fundamental eukaryotic organelle, not present in prokaryotes, poses many problems, including the origins of motility and sensory function, the origins of nine-fold symmetry, of basal bodies, and of transport and selective mechanisms involved in ciliogenesis. We propose the basis of ciliary origin to be a self-assembly RNA enveloped virus that contains unique tubulin and tektin precursors. The virus becomes the centriole and basal body, which would account for the self-assembly and self-replicative properties of these organelles, in contrast to previous proposals of spirochaete origin or endogenous differentiation, which do not readily account for the centriole or its properties. The viral envelope evolves into a sensory bud. The host cell supplies the transport machinery and molecular motors to construct the axoneme. Polymerization of cytoplasmic microtubules in the 9 + 0 axoneme completes the 9 + 2 pattern. Cell Motil. Cytoskeleton 2007. © 2007 Wiley-Liss, Inc. [source] |