Maximum Voluntary Contraction (maximum + voluntary_contraction)

Distribution by Scientific Domains


Selected Abstracts


Resistance training increases in vivo quadriceps femoris muscle specific tension in young men

ACTA PHYSIOLOGICA, Issue 1 2010
R. M. Erskine
Abstract Aim:, The present study investigated whether in vivo human quadriceps femoris (QF) muscle specific tension changed following strength training by systematically determining QF maximal force and physiological cross-sectional area (PCSA). Methods:, Seventeen untrained men (20 ± 2 years) performed high-intensity leg-extension training three times a week for 9 weeks. Maximum tendon force (Ft) was calculated from maximum voluntary contraction (MVC) torque, corrected for agonist and antagonist muscle activation, and moment arm length (dPT) before and after training. QF PCSA was calculated as the sum of the four component muscle volumes, each divided by its fascicle length. Dividing Ft by the sum of the component muscle PCSAs, each multiplied by the cosine of the respective fascicle pennation angle, provided QF specific tension. Results:, MVC torque and QF activation increased by 31% (P < 0.01) and 3% (P < 0.05), respectively, but there was no change in antagonist co-activation or dPT. Subsequently, Ft increased by 27% (P < 0.01). QF volume increased by 6% but fascicle length did not change in any of the component muscles, leading to a 6% increase in QF PCSA (P < 0.05). Fascicle pennation angle increased by 5% (P < 0.01) but only in the vastus lateralis muscle. Consequently, QF specific tension increased by 20% (P < 0.01). Conclusion:, An increase in human muscle specific tension appears to be a real consequence of resistance training rather than being an artefact of measuring errors but the underlying cause of this phenomenon remains to be determined. [source]


Effects of transient muscle contractions and stretching on the tendon structures in vivo

ACTA PHYSIOLOGICA, Issue 2 2002
K. KUBO
ABSTRACT This study compared the effects of static stretching (ST) and repeated muscle contractions (CON) on the viscoelastic properties of tendon structures in vivo. Eight male subjects performed ST (passively flexed to 35 of dorsiflexion) for 5 min and 50 repetitions of isometric maximum voluntary contraction (MVC) for 3 s each with 3 s relaxation. Before and after each task, the elongation of the tendon and aponeurosis of the medial gastrocnemius muscle (MG) was directly measured by ultrasonography, while the subjects performed ramp isometric plantar flexion up to MVC, followed by a ramp relaxation. The relationship between the estimated muscle force (Fm) and tendon elongation (L) during the ascending phase was applied to a linear regression, the slope of which was defined as stiffness of the tendon structures. The percentage of the area within the Fm,L loop to the area beneath the curve during the ascending phase was calculated as an index representing hysteresis. The ST protocol significantly decreased the stiffness (,8%) and hysteresis (29%)., respectively. In contrast, the CON protocol significantly decreased the stiffness, but not the hysteresis. These results suggested that the stretching and repeated contractions would make the tendon structures more complaint, and further decreased the hysteresis of the tendon structures. [source]


Differential activity patterns in the masseter muscle under simulated clenching and grinding forces

JOURNAL OF ORAL REHABILITATION, Issue 8 2005
H. J. SCHINDLER
summary, The aim of this study was to investigate (i) whether the masseter muscle shows differential activation under experimental conditions which simulate force generation during clenching and grinding activities; and (ii) whether there are (a) preferentially active muscle regions or (b) force directions which show enhanced muscle activation. To answer these questions, the electromyographic (EMG) activity of the right masseter muscle was recorded with five intramuscular electrodes placed in two deep muscle areas and in three surface regions. Intraoral force transfer and force measurement were achieved by a central bearing pin device equipped with three strain gauges (SG). The activity distribution in the muscle was recorded in four different mandibular positions (central, left, right, anterior). In each position, maximum voluntary contraction (MVC) was exerted in vertical, posterior, anterior, medial and lateral directions. The investigated muscle regions showed different amount of EMG activity. The relative intensity of the activation, with respect to other regions, changed depending on the task. In other words, the muscle regions demonstrated heterogeneous changes of the EMG pattern for the various motor tasks. The resultant force vectors demonstrated similar amounts in all horizontal bite directions. Protrusive force directions revealed the highest relative activation of the masseter muscle. The posterior deep muscle region seemed to be the most active compartment during the different motor tasks. The results indicate a heterogeneous activation of the masseter muscle under test conditions simulating force generation during clenching and grinding. Protrusively directed bite forces were accompanied by the highest activation in the muscle, with the posterior deep region as the most active area. [source]


Validation of diagnostic criteria for sleep bruxism

JOURNAL OF ORAL REHABILITATION, Issue 9 2002
K. BABA
Several diagnostic criteria for bruxism can be taken from the literature; however, most of them have never been validated. This study examined whether predictor variables taken from physical examinations and questionnaires were related to the actual bruxism levels. Fifty dental students agreed to participate in this study and eight examination variables and seven questionnaire variables were collected from them. The subjects measured their nocturnal EMG activity from the right masseter muscle for six consecutive nights in their home by means of a portable EMG device. Off-line analysis was performed on data from second to sixth nights. By using a custom made software, all EMG activity elevations above a minimum threshold of 50% of each subject's individually established maximum voluntary contraction (MVC) level were quantified with regard to the duration and number of elevations and then three outcome variables, which were event number per hour (number/h), event duration per hour (duration h,1), and duration per event (duration/event), were calculated. A multiple stepwise regression (MSR) analysis was conducted to assess the 15 predictor variables and the three outcome variables. These MSR analyses revealed that the joint sound score remained in the regression equation as a predictor (n=50, P < 0·05) of the likelihood that a subject would exhibit longer bruxism events (duration h,1and number h,1). It must be noted that the self-awareness and tooth attrition status were found not to be strong predictors and even for the above variable where significant association was found, the likelihood ratio between the variable and predicted outcomes was not robust. [source]


Upper limb muscle imbalance in tennis elbow: A functional and electromyographic assessment

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 12 2007
Omid Alizadehkhaiyat
Abstract The purpose of this study was to investigate strength, fatigability, and activity of upper limb musculature to elucidate the role of muscular imbalance in the pathophysiology of tennis elbow. Sixteen patients clinically diagnosed with tennis elbow, recruited from a university hospital upper limb orthopedic clinic, were compared with 16 control subjects with no history of upper limb musculoskeletal problem, recruited from university students and staff. Muscle strength was measured for grip, metacarpophalangeal, wrist, and shoulder on both sides. Electromyographic activity (RMS amplitude) and fatigue characteristics (median frequency slope) of five forearm and two shoulder muscles were measured during isometric contraction at 50% maximum voluntary contraction. All strength measurements showed dominance difference in C, but none in TE. In tennis elbow compared to controls, hand/wrist and shoulder strength and extensor carpi radialis (ECR) activity were reduced (p,<,0.05), while fatigue was normal. A global upper limb weakness exists in tennis elbow. This may be due to disuse and deconditioning syndrome caused by fear avoidance, and needs to be addressed in prevention and treatment. Activation imbalance among forearm muscles (reduced extensor carpi radialis activity) in tennis elbow, probably due to protective pain-related inhibition, could lead to a widespread upper limb muscle imbalance. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:1651,1657, 2007 [source]


Altered corticomotor representation in patients with Parkinson's disease

MOVEMENT DISORDERS, Issue 8 2003
Florian A. Kagerer PhD
Abstract In 6 patients with Parkinson's disease (PD) and 6 age-matched controls, transcranial magnetic stimulation was applied at 56 regions over the motor cortex and premotor cortex of each hemisphere, with the first dorsal interosseous (FDI) muscle of both hands activated at 15% maximum voluntary contraction during stimulation. For each site, motor evoked potential (MEP) landmarks were recovered, including MEP amplitude, MEP onset latency, and silent period duration. Scaled MEP amplitudes were used to construct individual cortical maps of the FDI muscles. The maps revealed an anterior displacement of the muscle representation in PD patients. This anterior shift over motor cortical areas may reflect increased contributions of corticocortical connections between motor cortex and premotor cortical areas, possibly enhanced by the visual feedback aspect of the task. These alterations may reflect adaptations to the impairments in striatocortical circuits in PD. © 2003 Movement Disorder Society [source]


Breakdown of adenine nucleotide pool in fatiguing skeletal muscle in McArdle's disease: A noninvasive 31P-MRS and EMG study

MUSCLE AND NERVE, Issue 6 2003
Jochen Zange PhD
Abstract Energy metabolism and electrical muscle activity were studied in the calf muscles of 19 patients with proven McArdle's disease and in 25 healthy subjects. Phosphorus magnetic resonance spectroscopy and surface electromyography (S-EMG) were performed during two isometric muscle contractions of 3 min at 30% maximum voluntary contraction, one performed during normal perfusion and the other during applied ischemia. After about 1 min of ischemic muscle contraction in diseased muscle a significant acceleration in phosphocreatine breakdown was observed, along with a significant decrease in adenosine triphosphate. During both contractions the absence of glycolysis was shown by a significant alkalinization. Furthermore, in patients we observed a greater increase in the S-EMG amplitude than in control subjects. We conclude that early on during moderate exercise, a small number of muscle fibers reach metabolic depletion, indicated by a reduction in the adenine nucleotide pool. An increasing number of motor units, which are still in a high-energy state, are continuously recruited to compensate for muscle fatigue. This functional compartmentation may contribute to the pathophysiology of exercise intolerance in McArdle's disease. Muscle Nerve 27: 728,736, 2003 [source]


The sites of neural adaptation induced by resistance training in humans

THE JOURNAL OF PHYSIOLOGY, Issue 2 2002
Timothy J. Carroll
Although it has long been supposed that resistance training causes adaptive changes in the CNS, the sites and nature of these adaptations have not previously been identified. In order to determine whether the neural adaptations to resistance training occur to a greater extent at cortical or subcortical sites in the CNS, we compared the effects of resistance training on the electromyographic (EMG) responses to transcranial magnetic (TMS) and electrical (TES) stimulation. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of 16 individuals before and after 4 weeks of resistance training for the index finger abductors (n= 8), or training involving finger abduction-adduction without external resistance (n= 8). TMS was delivered at rest at intensities from 5 % below the passive threshold to the maximal output of the stimulator. TMS and TES were also delivered at the active threshold intensity while the participants exerted torques ranging from 5 to 60 % of their maximum voluntary contraction (MVC) torque. The average latency of MEPs elicited by TES was significantly shorter than that of TMS MEPs (TES latency = 21.5 ± 1.4 ms; TMS latency = 23.4 ± 1.4 ms; P < 0.05), which indicates that the site of activation differed between the two forms of stimulation. Training resulted in a significant increase in MVC torque for the resistance-training group, but not the control group. There were no statistically significant changes in the corticospinal properties measured at rest for either group. For the active trials involving both TMS and TES, however, the slope of the relationship between MEP size and the torque exerted was significantly lower after training for the resistance-training group (P < 0.05). Thus, for a specific level of muscle activity, the magnitude of the EMG responses to both forms of transcranial stimulation were smaller following resistance training. These results suggest that resistance training changes the functional properties of spinal cord circuitry in humans, but does not substantially affect the organisation of the motor cortex. [source]


Measurement of physical work capacity during arm and shoulder lifting at various shoulder flexion and ad/abduction angles

HUMAN FACTORS AND ERGONOMICS IN MANUFACTURING & SERVICE INDUSTRIES, Issue 2 2003
Jung-Yong Kim
The purpose of this study was to provide information on physical work capacity during arm and shoulder lifting at various shoulder flexion and ad/abduction angles. We measured the maximum voluntary contractions (MVCs) in 20 male participants during controlled one-arm lifting. The lifting involved upward motion of the scapula at various shoulder angles. Simultaneously, the electromyographic (EMG) activity of 3 shoulder muscles and psychophysical workload were also recorded. The various measurements were compared to provide a multidimensional assessment of the physical work capacity of the shoulder at various working angles. In particular, 90 and 120 degrees of flexion, 30 degrees of adduction, and 90 degrees of abduction were found to be the most vulnerable angles based on the measured MVCs. The average root mean square value of the EMG increased most significantly at 90 to 150 degrees of flexion and at 30 and 60 degrees of abduction. Slightly different measurements were compared to validate the results. In addition, a 3-D static biomechanical model was used to show whether the estimated shoulder workload matched the measured physical capacity of the shoulder. In conclusion, these results may help ergonomists to identify shoulder angles associated with a relatively high risk of injury, and to match the workload with the physical capacity of the shoulder. Task-specific information on shoulder work capacity is needed in the manufacturing and shipbuilding industries to protect workers from acute injuries and cumulative trauma disorders of the shoulder. Experimental results provide various data on shoulder work capacity during realistic multijoint arm and shoulder lifting, and should help lead to improvements in workplace ergonomic design. © 2003 Wiley Periodicals, Inc. Hum Factors Man 13: 153,163, 2003. [source]