Maximum Relaxation (maximum + relaxation)

Distribution by Scientific Domains


Selected Abstracts


Relaxant effects of , -adrenergic agonists on porcine and human detrusor muscle

ACTA PHYSIOLOGICA, Issue 2 2005
J. K. Badawi
Abstract Aim:, Relaxant effects of different , -adrenoceptor agonists on porcine and human detrusor were examined. Thus, the , -adrenoceptor subtype mainly responsible for relaxation in the detrusor muscle of pigs was characterized. Additionally, different effects of several , -agonists in both species were shown. Methods:, Experiments were performed on muscle strips of porcine and human detrusor suspended in a tissue bath. The relaxant effects of the non-selective , -agonist isoprenaline, the selective ,2-agonists procaterol, salbutamol and the selective ,3-agonists BRL 37344, CL 316 243 and CGP 12177 on potassium-induced contraction were investigated. The inhibitory effect of different substances on the maximum contraction and the rank order of potency for endogenous catecholamines was determined in pigs. Furthermore, concentration-relaxation curves were performed for pigs and humans. Results:,Pigs: In the pre-treatment experiments isoprenaline and procaterol showed similar effects. The concentration,response experiments showed that the maximum relaxation induced by procaterol and salbutamol was more than 90%, not significantly different from isoprenaline, whereas the maximum relaxations of CL 316 243, BRL 37344 and CGP 12177 amounted to 68, 70 or 30%, respectively. Rank order of potencies was isoprenaline , adrenaline > noradrenaline. Humans: Isoprenaline, procaterol, salbutamol and CL 316 243 showed a maximum relaxation of 80, 41, 24 and 35% and pD2 values of 6.24, 5.65, 5.48 and 5.55, respectively. Conclusion:,,2-receptors play a main functional role in mediating relaxation of porcine detrusor. Selective ,2- and ,3-agonists similarly relax the human detrusor. Effects were smaller compared with the pig. [source]


Abstract no.: 6 Endothelium-dependent relaxation by purinergic receptors in the aorta of apolipoprotein E-deficient mice

FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 3 2005
A. Korda
Previously we reported that the acetylcholine-induced relaxation in the isolated aorta of apolipoprotein E-deficient (apoE -/- ) mice deteriorates after the development of atherosclerotic plaques, but remains normal in adjacent, plaque-free segments. The present study investigated the presence of functional purinergic receptors in the murine aorta, and whether their function changes before or after the development of atherosclerosis. Endothelium-dependent relaxation was measured in aorta segments of apoE -/- , C57BL6 (WT) and human apoAI-overexpressing apoE -/- mice (apoAI/apoE -/- ) on regular chow. Rings were isometrically contracted with phenylephrine to 50% of their maximum force before performing cumulative concentration-response curves to different nucleotides or their stable analogues. After the functional study, the cross-sectional area of the plaque was determined in every segment. The nucleotides induced complete (UTP, UDP, ATP) or partial (ADP) relaxation that was abolished by endothelial cell removal or nitric oxide (NO) synthase inhibition. The responses pointed to the presence of functional P2y1, P2y2 or P2y4 receptors on endothelial cells. RT-PCR confirmed the presence of P2y1 and P2y4 mRNA in the aorta of WT mice. Nucleotide responses were unaltered in lesion-free apoE -/- mice (5 months). However, in atherosclerotic segments of apoE -/- mice (18 months), the relaxation to ATP was impaired compared to age-matched WT controls (maximum amplitude (Emax) 25 ± 14%, n = 6 vs. 90 ± 3%, n = 5, P < 0.01). A similar defect was seen for the stable analogue ATP-gamma-S (Emax 36 ± 12% vs. 86 ± 3%, P < 0.01). Atherosclerotic apoE -/- segments were less sensitive to the NO donor spermineNONOate (pD2 6.74 ± 0.18) than WT segments (7.25 ± 0.20), but maximum relaxation was unaltered. In non-atherosclerotic aorta segments of the same apoE -/- mice all relaxation responses remained normal and were not different from WT. Strong negative correlations (P < 0.001) existed between lesion size and the Emax for ATP (rs = ,0.82) and ATP-gamma-S (rs = ,0.73) in apoE -/- mice. ApoAI overexpression improved the purinergic responses (Emax ATP 64 ± 9%, ATP-gamma-S 64 ± 10%, n = 5) and these were not different from WT (P > 0.05). An analysis of covariance with plaque size as covariate suggested that this benefit was secondary to the strongly reduced plaque formation in apoAI/apoE -/- mice. It is concluded that functional P2 y receptors are present on murine aortic endothelium. Furthermore, endothelium-dependent purinergic relaxation declines after plaque development. This deterioration involves decreased bioavailability of NO rather than enhanced ATP degradation. The defect is, however, not systemic since the responses remain unaltered in plaque-free segments of atherosclerosis-prone apoE -/- mice. [source]


Frenkel defect pair creation channels in KBr, NaBr and NaCl between 10 K and 100 K: a MD study

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 1 2005
K. S. SongArticle first published online: 19 JAN 200
Abstract Recent molecular dynamics (MD) study of exciton relaxation showed that starting from a free Frenkel-type exciton in undistorted lattice, the maximum relaxation is reached within about 1,2 ps at temperatures of 10K,100K in NaBr, KBr and NaCl. We present here several results, which include: the quenching of the triplet exciton luminescence; the fast conversion to Frenkel pairs near the quenching temperature. We propose a tentative model, which identifies various channels of defect creation, namely the low temperature dynamic production, the very fast process near the quenching temperature, and the slow thermally activated creation of Frenkel defect pair. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


A VEGF Trap Inhibits the Beneficial Effect of bFGF on Vasoreactivity in Corporal Tissues of Hypercholesterolemic Rabbits

THE JOURNAL OF SEXUAL MEDICINE, Issue 9 2008
Donghua Xie MD
ABSTRACT Introduction., Hypercholesterolemia causes a decrease in normal corporal tissue vasoreactivity in a preclinical model of erectile dysfunction. Previous studies have shown that intracorporal injection (ICI) of basic fibroblast growth factor (bFGF) reverses some of the detrimental vasoreactivity effects of hypercholesterolemia and increases vascular endothelial growth factor (VEGF) expression. Aim., We sought to determine whether the beneficial effects of bFGF are VEGF-mediated. Methods., A total of 32 New Zealand white rabbits were fed a 1% cholesterol diet for 6 weeks and randomly divided into four groups (N = 8/group). Group 1 received a 2.5 µg bFGF ICI and 2.5 × 1011 viral particle unit (vpu) of adenovirus encoding ,-galactosidase (Ad,-gal) ICI, 10 days later. Group 2 received a 2.5 µg bFGF ICI and 2.5 × 1011 vpu of adenovirus encoding soluble VEGF receptor (VEGFR) (AdsVEGFR, a VEGF trap) ICI, 10 days later. Group 3 received phosphate buffered saline solution (PBS) ICI and 2.5 × 1011 vpu Ad,-gal ICI, 10 days later. Group 4 received PBS ICI and 2.5 × 1011 vpu AdsVEGFR ICI, 10 days later. Main Outcome Measures., The corpus cavernosum was harvested for vasoreactivity studies 10 days post viral injection. The effective dose of 50% maximum relaxation was determined. VEGF levels were assessed by enzyme-linked immunosorbent assay. Total and phoshorylated Akt and endothelial nitric oxide were analyzed by Western blot. Results., Endothelium-dependent vasoreactivity was significantly greater in Group 1 vs. all other groups. The VEGF trap eliminated the beneficial effects of bFGF on endothelium-dependent vasoreactivity and decreased Akt and nitric oxide phosphorylation. Conclusions., These data demonstrate that VEGF activity contributes much of the therapeutic modulation of bFGF-mediated vasoreactivity in corporal tissue. Xie D, Findley CM, Greenfield JM, Pippen AM, Kontos CD, Donatucci CF, and Annex BH. A VEGF trap inhibits the beneficial effect of bFGF on vasoreactivity in corporal tissues of hypercholesterolemic rabbits. J Sex Med 2008;5:2069,2078. [source]


Relaxant effects of , -adrenergic agonists on porcine and human detrusor muscle

ACTA PHYSIOLOGICA, Issue 2 2005
J. K. Badawi
Abstract Aim:, Relaxant effects of different , -adrenoceptor agonists on porcine and human detrusor were examined. Thus, the , -adrenoceptor subtype mainly responsible for relaxation in the detrusor muscle of pigs was characterized. Additionally, different effects of several , -agonists in both species were shown. Methods:, Experiments were performed on muscle strips of porcine and human detrusor suspended in a tissue bath. The relaxant effects of the non-selective , -agonist isoprenaline, the selective ,2-agonists procaterol, salbutamol and the selective ,3-agonists BRL 37344, CL 316 243 and CGP 12177 on potassium-induced contraction were investigated. The inhibitory effect of different substances on the maximum contraction and the rank order of potency for endogenous catecholamines was determined in pigs. Furthermore, concentration-relaxation curves were performed for pigs and humans. Results:,Pigs: In the pre-treatment experiments isoprenaline and procaterol showed similar effects. The concentration,response experiments showed that the maximum relaxation induced by procaterol and salbutamol was more than 90%, not significantly different from isoprenaline, whereas the maximum relaxations of CL 316 243, BRL 37344 and CGP 12177 amounted to 68, 70 or 30%, respectively. Rank order of potencies was isoprenaline , adrenaline > noradrenaline. Humans: Isoprenaline, procaterol, salbutamol and CL 316 243 showed a maximum relaxation of 80, 41, 24 and 35% and pD2 values of 6.24, 5.65, 5.48 and 5.55, respectively. Conclusion:,,2-receptors play a main functional role in mediating relaxation of porcine detrusor. Selective ,2- and ,3-agonists similarly relax the human detrusor. Effects were smaller compared with the pig. [source]