Home About us Contact | |||
Maximum Local Energy Dissipation (maximum local + energy_dissipation)
Selected AbstractsPower consumption and maximum energy dissipation in a milliliter-scale bioreactorBIOTECHNOLOGY PROGRESS, Issue 2 2010Ralf Hortsch Abstract Mean power consumption and maximum local energy dissipation were measured as function of operating conditions of a milliliter-scale stirred tank bioreactor (V = 12 mL) with a gas-inducing impeller. A standard laboratory-scale stirred tank bioreactor (V = 1,200 mL) with Rushton turbines was used as reference. The measured power characteristics (Newton number as function of Reynolds number) were the same on both scales. The changeover between laminar and turbulent flow regime was observed at a Reynolds number of 3,000 with the gas-inducing stirrer on a milliliter-scale. The Newton number (power number) in the turbulent flow regime was 3.3 on a milliliter-scale, which is close to values reported for six-blade Rushton turbines of standard bioreactors. Maximum local energy dissipation (,max) was measured using a clay/polymer flocculation system. The maximum local energy dissipation in the milliliter-scale stirred tank bioreactor was reduced compared with the laboratory-scale stirred tank at the same mean power input per unit mass (,ø), yielding ,max/,ø , 10 compared with ,max/,ø , 16. Hence, the milliliter-scale stirred tank reactor distributes power more uniformly in the reaction medium. These results are in good agreement with literature data, where a decreasing ,max/,ø with increasing ratio of impeller diameter to reactor diameter is found (d/D = 0.7 compared with d/D = 0.4). Based on these data, impeller speeds can now be easily adjusted to achieve the same maximum local energy dissipation at different scales. This enables a more reliable and robust scale-up of bioprocesses from milliliter-scale to liter-scale reactors. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] New milliliter-scale stirred tank bioreactors for the cultivation of mycelium forming microorganismsBIOTECHNOLOGY & BIOENGINEERING, Issue 3 2010Ralf Hortsch Abstract A novel milliliter-scale stirred tank bioreactor was developed for the cultivation of mycelium forming microorganisms on a 10 milliliter-scale. A newly designed one-sided paddle impeller is driven magnetically and rotates freely on an axis in an unbaffled reaction vessel made of polystyrene. A rotating lamella is formed which spreads out along the reactor wall. Thus an enhanced surface-to-volume ratio of the liquid phase is generated where oxygen is introduced via surface aeration. Volumetric oxygen transfer coefficients (kLa),>,0.15,s,1 were measured. The fast moving liquid lamella efficiently prevents wall growth and foaming. Mean power consumption and maximum local energy dissipation were measured as function of operating conditions in the milliliter-scale stirred tank bioreactor (V,=,10,mL) and compared to a standard laboratory-scale stirred tank bioreactor with six-bladed Rushton turbines (V,=,2,000,mL). Mean power consumption increases with increasing impeller speed and shows the same characteristics and values on both scales. The maximum local energy dissipation of the milliliter-scale stirred tank bioreactor was reduced compared to the laboratory-scale at the same mean volumetric power input. Hence the milliliter impeller distributes power more uniformly in the reaction medium. Based on these data a reliable and robust scale-up of fermentation processes is possible. This was demonstrated with the cultivation of the actinomycete Streptomyces tendae on both scales. It was shown that the process performances were equivalent with regard to biomass concentration, mannitol consumption and production of the pharmaceutical relevant fungicide nikkomycin Z up to a process time of 120,h. A high parallel reproducibility was observed on the milliliter-scale (standard deviation,<,8%) with up to 48 stirred tank bioreactors operated in a magnetic inductive drive. Rheological behavior of the culture broth was measured and showed a highly viscous shear-thinning non-Newtonian behavior. The newly developed one-sided paddle impellers operated in unbaffled reactors on a 10 milliliter-scale with a magnetic inductive drive for up to 48 parallel bioreactors allows for the first time the parallel bioprocess development with mycelium forming microorganisms. This is especially important since these kinds of cultivations normally exhibit process times of 100,h and more. Thus the operation of parallel stirred tank reactors will have the potential to reduce process development times drastically. Biotechnol. Bioeng. 2010; 106: 443,451. © 2010 Wiley Periodicals, Inc. [source] Power consumption and maximum energy dissipation in a milliliter-scale bioreactorBIOTECHNOLOGY PROGRESS, Issue 2 2010Ralf Hortsch Abstract Mean power consumption and maximum local energy dissipation were measured as function of operating conditions of a milliliter-scale stirred tank bioreactor (V = 12 mL) with a gas-inducing impeller. A standard laboratory-scale stirred tank bioreactor (V = 1,200 mL) with Rushton turbines was used as reference. The measured power characteristics (Newton number as function of Reynolds number) were the same on both scales. The changeover between laminar and turbulent flow regime was observed at a Reynolds number of 3,000 with the gas-inducing stirrer on a milliliter-scale. The Newton number (power number) in the turbulent flow regime was 3.3 on a milliliter-scale, which is close to values reported for six-blade Rushton turbines of standard bioreactors. Maximum local energy dissipation (,max) was measured using a clay/polymer flocculation system. The maximum local energy dissipation in the milliliter-scale stirred tank bioreactor was reduced compared with the laboratory-scale stirred tank at the same mean power input per unit mass (,ø), yielding ,max/,ø , 10 compared with ,max/,ø , 16. Hence, the milliliter-scale stirred tank reactor distributes power more uniformly in the reaction medium. These results are in good agreement with literature data, where a decreasing ,max/,ø with increasing ratio of impeller diameter to reactor diameter is found (d/D = 0.7 compared with d/D = 0.4). Based on these data, impeller speeds can now be easily adjusted to achieve the same maximum local energy dissipation at different scales. This enables a more reliable and robust scale-up of bioprocesses from milliliter-scale to liter-scale reactors. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] |