Home About us Contact | |||
Maximum Height (maximum + height)
Selected AbstractsShaking table model test on Shanghai World Financial Center TowerEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 4 2007Xilin Lu Abstract The height of 101-storey Shanghai World Financial Center Tower is 492m above ground making it possible the tallest building in the world when completed. Three parallel structural systems including mega-frame structure, reinforced concrete and braced steel services core and outrigger trusses, are combined to resist vertical and lateral loads. The building could be classified as a vertically irregular structure due to a number of stiffened and transfer stories in the building. Complexities related to structural system layout are mainly exhibited in the design of services core, mega-diagonals and outrigger trusses. According to Chinese Code, the height 190 m of the building clearly exceeds the stipulated maximum height of for a composite frame/reinforced concrete core building. The aspect ratio of height to width also exceeds the stipulated limit of 7 for seismic design intensity 7. A 1/50 scaled model is made and tested on shaking table under a series of one and two-dimensional base excitations with gradually increasing acceleration amplitudes. This paper presents the dynamic characteristics, the seismic responses and the failure mechanism of the structure. The test results demonstrate that the structural system is a good solution to withstand earthquakes. The inter-storey drift and the overall behaviour meet the requirements of Chinese Design Code. Furthermore, weak positions under seldom-occurred earthquakes of seismic design intensity 8 are found based on the visible damages on the testing model, and some corresponding suggestions are proposed for the engineering design of the structure under extremely strong earthquake. Copyright © 2006 John Wiley & Sons, Ltd. [source] Interspecific relationships among growth, mortality and xylem traits of woody species from New ZealandFUNCTIONAL ECOLOGY, Issue 2 2010Sabrina E. Russo Summary 1.,Wood density is considered a key functional trait influencing the growth and survival of woody plants and has been shown to be related to a slow,fast rate-of-living continuum. Wood density is, however, an emergent trait arising from several vascular properties of wood, including the diameter and frequency of xylem conduits. 2.,We aimed to test the hypotheses that there is a set of inter-related trade-offs linked to the different functions of wood, that these trade-offs have direct consequences for tree growth and survival and that these trade-offs underlie the observed correlations between wood density and demographic rates. We evaluated the covariation between xylem anatomical traits among woody species of New Zealand and whether that covariation had the potential to constrain variation in wood density and demographic rates. 3.,Several xylem traits were strongly correlated with each other, but wood density was not correlated with any of them. We also found no significant relationships between wood density and growth or mortality rate. Instead, growth was strongly related to xylem traits associated with hydraulic capacity (conduit diameter and a conductivity index) and to maximum height, whereas mortality rate was strongly correlated only with maximum height. The diameter and frequency of conduits exhibited a significant negative relationship, suggesting a trade-off, which restricted variation in wood density and growth rate, but not mortality rate. 4.,Our results suggest, for woody species in New Zealand, that growth rate is more closely linked to xylem traits determining hydraulic conductance, rather than wood density. We also found no evidence that denser woods conferred higher survival, or that risk of cavitation caused by wide conduits increased mortality. 5.,In summary, we found little support for the idea that wood density is a good proxy for position along a fast,slow rate-of-living continuum. Instead, the strong, negative relationship between vessel diameter and frequency may constrain the realized diversity of demographic niches of tree species in New Zealand. Trade-offs in function therefore have the potential to shape functional diversity and ecology of forest communities by linking selection on structure and function to population-level dynamics. [source] Analysis of coupled seepage and stress fields in rock mass around the Xiaowan arch damINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 8 2004Chai Junrui Abstract The Xiaowan arch dam, with a maximum height of 292 m, is located across the Lancangjiang River in Yunnan Province of China, and once completed will be the highest arch dam in China. Because of the high water head and the arch action, it is necessary to analyse the interaction between seepage and stress fields in rock mass around the Xiaowan arch dam. Numerical solution of coupled seepage and stress fields in rock mass around the Xiaowan arch dam is analysed by means of the multi-level fracture network model and the finite element method. It can be shown from the computation results that storage of the reservoir makes the seepage field change much, and makes the effective vertical stress in rock foundation near the dam and the tensile stress in the abutment rock mass increase, and that the coupled action between seepage and stress fields should be taken into account. Copyright © 2004 John Wiley & Sons, Ltd. [source] HYDROLOGICAL EFFECTS OF AN UNCONTROLLED FLOWING WELL, RED RIVER VALLEY, NORTH DAKOTA, USA,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2004Philip J. Gerla ABSTRACT: In areas of the Red River Valley that overlie permeable Paleozoic sediments, wetlands and salinization have developed where unregulated flowing wells discharge brackish water. Field data were collected to assess the fate of water and salt from a well 25 km northwest of Grand Forks. Drilled during the drought of the 1930s, discharge was used to replenish water in a small oxbow pond used by livestock. The unregulated well discharges about 56 m3/day, measured since 1993. This discharge exceeds ground water flow from the site, thereby forming a ground water mound with a maximum height of 1 m and a diameter of about 300 m. Most soil and underlying sediments near the well have a hydraulic conductivity of 0.3 m3/day. Flow net analysis suggests that less than 25 percent infiltrates, with the remaining water lost to surface flow and evapotranspiration (ET). Evapotranspiration and slow infiltration has led to increased salinization, with shallow soils exhibiting EC to 500 milliSiemens/m. The most pronounced soil salinization occurs along the margins of the oxbow pond and meander scars. Wetland vegetation with low diversity comprises three zones, with species associations similar to those of closed basin prairie potholes to the west. [source] Plant traits as predictors of woody species dominance in climax forest communitiesJOURNAL OF VEGETATION SCIENCE, Issue 3 2001Fumito Koike Satake et al. (1989) Abstract. The dominance of a given tree or shrub species in a particular forest community may be determined by many ecological traits of the target species, as well as those of the surrounding species as its potential competitors. The present study was conducted to evaluate the possibility of predicting community status (species composition and dominance) on the basis of traits of local flora using statistical methods, and to visualize the mathematical function which determines species dominance. A general linear model and logistic regression were used for the statistical analysis. Dependent variables were designated as dominance and presence/absence of species in climax forest, with independent variables as vegetative and reproductive traits. Subalpine, cool-temperate, warm-temperate and subtropical climax rain forests in East Asia were studied. Quantitative prediction of climax community status could readily be made based on easily measured traits of local flora. Species composition and 74.6% of the total variance of species dominance were predicted based on two traits; maximum height and shade tolerance. Through application of this method, the capacity of an alien species to invade a climax forest community could possibly be predicted prior to introduction of the alien species. [source] The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistanceNEW PHYTOLOGIST, Issue 4 2010Giai Petit Summary ,Recent research suggests that increasing conduit tapering progressively reduces hydraulic constraints caused by tree height. Here, we tested this hypothesis using the tallest hardwood species, Eucalyptus regnans. ,Vertical profiles of conduit dimensions and vessel density were measured for three mature trees of height 47, 51 and 63 m. ,Mean hydraulic diameter (Dh) increased rapidly from the tree apex to the point of crown insertion, with the greatest degree of tapering yet reported (b > 0.33). Conduit tapering was such that most of the total resistance was found close to the apex (82,93% within the first 1 m of stem) and the path length effect was reduced by a factor of 2000. Vessel density (VD) declined from the apex to the base of each tree, with scaling parameters being similar for all trees (a = 4.6; b = ,0.5). ,Eucalyptus regnans has evolved a novel xylem design that ensures a high hydraulic efficiency. This feature enables the species to grow quickly to heights of 50,60 m, beyond the maximum height of most other hardwood trees. [source] Optical absorption, paramagnetic resonance and depolarisation currents in MgAl2O4 spinelPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 3 2007Roberto Paiva Abstract Optical Absorption (OA), Electron Paramagnetic Resonance (EPR) and Thermally Stimulated Depolarisation Currents (TSDC) techniques were applied to study the effects of irradiation and thermal treatments in the formation, aggregation and destruction processes of dipole defects in MgAl2O4 spinel. Irradiated MgAl2O4 crystals present two OA bands centred at 3.4 eV and 5.1 eV. The 3.4 eV band increases with the irradiation-dose, stabilizes its maximum height for doses near 10 kGy and is completely destroyed for thermal treatments above 500 K. This same band decays when the sample is maintained at room temperature reaching a constant value after a few weeks. The EPR spectrum is composed by two superimposed bands at g = 2.011. The gamma dose dependence, the thermal treatments between 370 K and 500 K and the thermal decay of the two bands at room temperature, show that each band behaves in a different way thus indicating that they are associated with two different defects. Gamma dose of 10 kGy produces a TSDC band at 245 K. When the sample is maintained at room temperature, after the gamma irradiation, for several weeks, a displacement in the peak position to 290 K, is observed. Thermal treatments above 500 K destroy the 290 K band. This band is associated to at least two V-type centres. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Evaluation of decision criteria for detection of spinal cord compression based on cervical myelography in horses: 38 cases (1981,2001)EQUINE VETERINARY JOURNAL, Issue 1 2004J. Van Biervliet Summary Reasons for performing study: Different criteria have been described based on height reduction of the total myelographic contrast column and components of it as tests for compression of the spinal cord due to cervical stenotic myelopathy (CSM). Fifty percent height reduction of the dorsal myelographic column (DMC), <2 mm empiric height of the DMC and a 40% reduction of the ratio of stenosis calculated based on the height reduction of the entire dural diameter (DD) have been described as decision criteria for considering the test result positive. The reasons for selecting these decision criteria or their accuracies have rarely been reported. Objectives: To evaluate the accuracy of diagnostic criteria based on reduced height of the total myelographic column and components of it for diagnosing extradural spinal cord compression using different decision criteria, and make recommendations for consistent myelographic interpretation in horses suspected of having CSM. Methods: Four measurements were obtained by 2 readers in a retrospective sample population of 38 horses in which both cervical myelography and histopathological examination of the cervical spinal cord were performed. The prevalence of CSM in the sample was 50%. At intervertebral sites, the minimum heights of the DD and DMC were measured. At intravertebral sites, the maximum heights of the entire DD and DMC were obtained. Percent height reductions of the DMC and DD were determined as the ratio of minimum intervertebral height to maximum intravertebral height within the next cranial vertebra. Histological examination was used as the gold standard for determining the actual site of spinal cord compression. Sensitivity and specificity for the diagnostic criteria were estimated at each site in neutral and flexed neck positions using several different decision criteria. Conclusions: At C6-C7, in neutral or flexed neck position and using 20% reduction of DD, the test was highly sensitive and specific for CSM. At other sites, reduced height of the myelographic column generally was not accurate for diagnosing extradural spinal cord compression. Using 20% reduction of DD in neutral position at the mid-cervical sites, the test had only low sensitivity and high specificity. Flexion of the neck appeared to increase detection of spinal cord compression in the mid-cervical region, but also substantially increased the frequency of false-positive diagnoses. Potential relevance: By using the reported sensitivity and specificity estimates, readers may decide on a decision criterion for diagnosis of extradural spinal cord compression due to CSM. However, in planning a surgical correction, it is difficult to define a decision criterion that combines acceptable sensitivity and specificity, especially at the mid-cervical sites. [source] Behavioral patterns of drop impingement onto rigid substrates with a wide range of wettability and different surface temperaturesAICHE JOURNAL, Issue 8 2009Xiying Li Abstract This article concerns behavioral patterns of droplet impingement onto solid substrates covering a wide range of wettability from hydrophilic to superhydrophobic surfaces heated at different temperatures. For droplet impingement onto partial hydrophobic surfaces (mirror-polished Cu substrate), the maximum heights of receding droplet undergoing a consecutive increment with surface temperature can be explained taking account of Marangoni flow. Also, the relation to predict the increment of droplet heights with surface temperature was manifested in the light of lubrication approximation combined with energy conservation. However, this relation is only valid for droplet impacts onto partial hydrophobic surface, because the recoiling droplet height was observed to be independent of surface temperature for both hydrophilic and superhydrophobic targets. This phenomenon was attributed to inherent wettability accompanying larger contact angle hysteresis for the hydrophilic substrate and to the presence of an adiabatic gas layer between the composite surface and impacting droplet, for the superhydrophobic target. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] |