Maximum Enzyme Activity (maximum + enzyme_activity)

Distribution by Scientific Domains


Selected Abstracts


Production of a Laccase and Decrease of the Phenolic Content in Canola Meal during the Growth of the Fungus Pleurotus ostreatus in Solid State Fermentation Processes

ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 1 2004
J. Hu
Abstract Solid state fermentation of canola meal was carried out with the fungus Pleurotus ostreatus DAOM 197961, which is a producer of laccase. The aim of this study was to examine the effects of moisture content, inoculum size, homogenisation of inoculum and particle size of canola meal on the growth of the fungus, the production of a laccase and the decrease of the content of sinapic acid esters (SAE) in a solid state process. The results showed that the optimum moisture content, which was varied in the media between 50% and 75%, for the growth and enzyme production was 60%. The initial rate of SAE content decrease was faster in the media with 70% and 75% moisture than in those with lower moisture levels. In the study of the effects of inoculum concentration in the range of 1.1 mg to 5.5 mg/g of the medium, it was found that larger amounts of biomass and enzyme were produced in the media with inoculum concentrations from 1.1 mg to 3.3 mg/g of the medium than in the media with a higher inoculum concentration. The final and approximately the same concentrations of SAE were reached at the same time regardless of the inoculum concentration. Considering that the fungus formed pellets under the conditions at which it was grown during the inoculum preparation, it was necessary to break them by homogenisation prior to their utilisation as an inoculum. The homogenisation was carried out during a period between 15s and 200s. Although higher biomass concentrations and enzyme activities were obtained in the media which were inoculated with the inoculum homogenised for 15s and 30s, the maximum enzyme activities and biomass concentrations were reached in the media inoculated with the inoculum, which was homogenised for 120s and 200s. The time of inoculum homogenisation did not influence the kinetics of the SAE decrease. When the effects of the particle size of canola meal on the process were studied, it was found that larger particles of the meal in the solid media were more favourable for the production of the biomass and enzyme, and for a faster decrease of the SAE content than those of smaller sizes. From the obtained results it can be concluded that the tested variables have a significant influence on the growth of the fungus Pleurotus ostreatus DAOM 197961, the production of laccase and the decrease of the SAE content in canola meal. The data could be useful for the development of a solid state process for the production of laccase and for the decrease of the phenolics content in canola meal. [source]


Measurement of key metabolic enzyme activities in mammalian cells using rapid and sensitive microplate-based assays

BIOTECHNOLOGY & BIOENGINEERING, Issue 3 2010
R. Janke
Abstract Sensitive microplate-based assays to determine low levels of key enzyme activities in mammalian cells are presented. The enzyme platform consists of four cycling assays to measure the activity of 28 enzymes involved in central carbon and glutamine metabolism. The sensitivity limit of all cycling assays was between 0.025 and 0.4,nmol product. For the detection of glutaminase activity, a new glutamate cycle system involving the enzymes glutamate dehydrogenase and aspartate transaminase was established. The relative standard deviation of the method was found to be 1.7% with a limit of detection of 8.2,pmol and a limit of quantitation of 24.8,pmol. Hence, cell extracts could be highly diluted to reduce interferences caused by other components in the extract, which in addition minimized underestimates or overestimates of actual enzyme activities. Since substrate concentrations could be maintained at a nearly constant level throughout the assay product accumulation during the reaction was low, which minimized product inhibition. As an example, the enzyme platform was used to investigate maximum enzyme activities of stationary-phase MDCK cells grown in serum-containing GMEM medium as typically used in influenza vaccine production. Biotechnol. Bioeng. 2010;107: 566,581. © 2010 Wiley Periodicals, Inc. [source]


On the variability of respiration in terrestrial ecosystems: moving beyond Q10

GLOBAL CHANGE BIOLOGY, Issue 2 2006
ERIC A. DAVIDSON
Abstract Respiration, which is the second most important carbon flux in ecosystems following gross primary productivity, is typically represented in biogeochemical models by simple temperature dependence equations. These equations were established in the 19th century and have been modified very little since then. Recent applications of these equations to data on soil respiration have produced highly variable apparent temperature sensitivities. This paper searches for reasons for this variability, ranging from biochemical reactions to ecosystem-scale substrate supply. For a simple membrane-bound enzymatic system that follows Michaelis,Menten kinetics, the temperature sensitivities of maximum enzyme activity (Vmax) and the half-saturation constant that reflects the affinity of the enzyme for the substrate (Km) can cancel each other to produce no net temperature dependence of the enzyme. Alternatively, when diffusion of substrates covaries with temperature, then the combined temperature sensitivity can be higher than that of each individual process. We also present examples to show that soluble carbon substrate supply is likely to be important at scales ranging from transport across membranes, diffusion through soil water films, allocation to aboveground and belowground plant tissues, phenological patterns of carbon allocation and growth, and intersite differences in productivity. Robust models of soil respiration will require that the direct effects of substrate supply, temperature, and desiccation stress be separated from the indirect effects of temperature and soil water content on substrate diffusion and availability. We speculate that apparent Q10 values of respiration that are significantly above about 2.5 probably indicate that some unidentified process of substrate supply is confounded with observed temperature variation. [source]


OPTIMIZATION OF PERMEABILIZATION PROCESS FOR LACTOSE HYDROLYSIS IN WHEY USING RESPONSE SURFACE METHODOLOGY

JOURNAL OF FOOD PROCESS ENGINEERING, Issue 3 2009
GURPREET KAUR
ABSTRACT To overcome the permeability barrier and prepare whole cell biocatalysts with high activities, permeabilization of Kluyveromyces marxianus var. lactis NCIM 3566 in relation to, -galactosidase activity was optimized using cetyltrimethylammonium bromide (CTAB) as permeabilizing agent. Permeabilized whole cells can be advantageous over pure enzyme preparations in terms of cost-effectiveness and increased stability maintained by the intracellular environment. Response surface methodology (RSM) was applied to optimize concentration of CTAB, temperature and the treatment time for maximum permeabilization of yeast cells. The optimum operating conditions for permeabilization process to achieve maximum enzyme activity obtained by RSM were 0.06% (w/v) CTAB concentration, 28C temperature and process duration of 14 min. At these conditions of process variables, the maximum value of enzyme activity was found to be 1,334 IU/g. The permeabilized yeast cells were highly effective and resulted in 90.5% lactose hydrolysis in whey. PRACTICAL APPLICATION , -Galactosidase is one of the most promising enzymes, which has several applications in the food, fermentation and dairy industry. However, the industrial applications of , -galactosidase have been hampered by the costs involved in downstream processing. The present investigation was focused on developing the low-cost technology for lactose hydrolysis based on permeabilization process. Disposal of lactose in whey and whey permeates is one of the most significant problems with regard to economics and environmental impact faced by the dairy industries. Keeping this in view, lactose hydrolysis in whey has been successfully performed using permeabilized Kluyveromyces marxianus cells. Hydrolysis of lactose using , -galactosidase converts whey into a potentially very useful food ingredient, which has immense applications in food industries. Its use has increased significantly in recent years, mainly in the dairy products and in digestive preparations. Lactose hydrolysis causes several potential changes in the manufacture and marketing of dairy products, including increased solubility, sweetness and broader fermentation possibilities. [source]


Purification and partial characterization of a dipeptidyl peptidase from Prevotella intermedia

MOLECULAR ORAL MICROBIOLOGY, Issue 3 2003
Y. Shibata
A peptidase hydrolyzed X-Pro- p -nitroanilide was purified from the cell extract of Prevotella intermedia ATCC 25611 by ion-exchange chromatography and hydrophobic interaction chromatography. The purified enzyme exhibited a molecular size of 74 kDa from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the maximum enzyme activity was found between pH 7.0 and pH 7.5. This peptidase was a serine enzyme and hydrolyzed Lys-Pro- p -nitroanilide, Arg-Pro- p -nitroanilide, and Ala-Pro- p -nitroanilide, but Lys-Ala- p -nitroanilide was not split. The enzyme may be classified as a dipeptidyl peptidase IV. [source]