Home About us Contact | |||
Maximum Conversion (maximum + conversion)
Selected AbstractsMixed Culture Bioconversion of 16-Dehydropregnenolone Acetate to Androsta-1,4-diene-3,17-dione: Optimization of ParametersBIOTECHNOLOGY PROGRESS, Issue 2 2003Tushar Banerjee Bioconversion of 16-dehydropregnenolone acetate (16-DPA) to androsta-1,4-diene-3,17-dione (ADD), an intermediate for the production of female sex hormones, by mixed culture of Pseudomonasdiminuta MTCC 3361 and Comamonas acidovorans MTCC 3362 is reported. Various physicochemical parameters for the bioconversion of 16-DPA to ADD have been optimized in shake flask cultures. Nutrient broth inoculated with actively growing co-culture proved ideal for bacterial growth and bioconversion. A temperature range of 35,40 °C was most suitable; higher or lower temperatures adversely affected the bioconversion. Dimethylformamide below 2% concentration was the most suitable carrier solvent. Maximum conversion was recorded at 0.5 mg mL,1 16-DPA. A pH of 5.0 yielded a peak conversion of 62 mol % in 120 h incubation period. Addition of 9,-hydroxylase inhibitors failed to prevent further breakdown of ADD to nonsteroidal products. 16-DPA conversion in a 5 L fermenter followed a similar trend. [source] Synthesis of polymer-supported metal-ion complexes and evaluation of their catalytic activitiesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008K. C. Gupta Abstract Polymer-supported transition-metal-ion complexes of the N,N,-bis(o -hydroxy acetophenone) propylenediamine (HPPn) Schiff base were prepared by the complexation of iron(III), cobalt(II), and nickel(II) ions on a polymer-anchored N,N,-bis(5-amino- o -hydroxy acetophenone) propylenediamine Schiff base. The complexation of iron(III), cobalt(II), and nickel(II) ions on the polymer-anchored HPPn Schiff base was 83.44, 82.92, and 89.58 wt%, respectively, whereas the unsupported HPPn Schiff base showed 82.29, 81.18, and 87.29 wt % complexation of these metal ions. The iron(III) ion complexes of the HPPn Schiff base showed octahedral geometry, whereas the cobalt(II) and nickel(II) ion complexes were square planar in shape, as suggested by spectral and magnetic measurements. The thermal stability of the HPPn Schiff base increased with the complexation of metal ions, as evidenced by thermogravimetric analysis. The HPPn Schiff base showed a weight loss of 51.0 wt % at 500°C, but its iron(III), cobalt(II), and nickel(II) ion complexes showed weight losses of 27.0, 35.0, and 44.7 wt % at the same temperature. The catalytic activity of the unsupported and supported metal-ion complexes was analyzed by the study of the oxidation of phenol and epoxidation of cyclohexene in the presence of hydrogen peroxide. The supported HPPn Schiff base complexes of iron(III) ions showed a 73.0 wt % maximum conversion of phenol and 90.6 wt % epoxidation of cyclohexene, but unsupported complexes of iron(III) ions showed 63.8 wt % conversion of phenol and 83.2 wt % epoxidation of cyclohexene. The product selectivity for catechol (CTL) and epoxy cyclohexane (ECH) was 93.1 wt % and 98.1 wt % with the supported HPPn Schiff base complexes of iron(III) ions, but it was low with the supported Schiff base complexes of cobalt(II) and nickel(II) ions. The selectivity for CTL and ECH varied with the molar ratio of the metal ions but remained unaffected by the molar ratio of hydrogen peroxide to the substrate. The energy of activation for the epoxidation of cyclohexene and oxidation of phenol with the polymer-supported Schiff base complexes of iron(III) ions was 10.0 and 12.7 kJ/mol, respectively, but it was found to be higher with the supported HPPn Schiff base complexes of cobalt(II) and nickel(II) ions and with the unsupported HPPn Schiff base complexes of iron(III), cobalt(II), and nickel(II) ions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008 [source] Bioethanol production from bio- organosolv pulps of Pinus radiata and Acacia dealbataJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 8 2007Claudio Muñoz Abstract Wood chips from Pinus radiata and Acacia dealbata were pretreated with the white-rot fungi Ceriporiopsis subvermispora and Ganoderma australe, respectively, for 30 days at 27 °C and 55% relative humidity, followed by an organosolv delignification with 60% ethanol solution at 200 °C for 1 h to produce pulps with high cellulose and low lignin content. Biotreatment for 30 days was chosen based on low weight and cellulose losses (lower than 4%) and lignin degradation higher than 9%. After organosolv delignification, pulp yield for P. radiata and A. dealbata pulps was 45,49% and 31,51%, respectively. P. radiata bio-pulps showed higher glucan (93%) and lower lignin content (6%) than control pulps (82% glucan and 13% lignin). A. dealbata bio-pulps also showed higher glucan (95%) and lower lignin content (2%) than control pulps (92% glucan and 4% lignin). Pulp suspensions at 2% consistency were submitted either to separate enzymatic hydrolysis and fermentation (SHF) or simultaneous enzymatic saccharification and fermentation (SSF) for bioethanol production. The yeast Saccharomyces cerevisiae was used for fermentation. Glucan-to-glucose conversion in the enzymatic hydrolysis of control and bio-pulps of P. radiata was 55% and 100%, respectively, and it was 100% for all pulp samples case of A. dealbata. The highest ethanol yield (calculated as percentage of theoretical yield) during SHF of P. radiata control and bio-pulps was 38% and 55%, respectively, and for A. dealbata control and bio-pulps 62% and 69%, respectively. The SSF of P. radiata control and bio-pulps yielded 10% and 65% of ethanol, respectively, and 77% and 82% for A. dealbata control and bio-pulps, respectively. In wood basis, the maximum conversion obtained (g ethanol per kg wood) in SHF was 37% and 51% (for P. radiata and A. dealbata pulps, respectively) and 44% and 65% in SSF (for P. radiata and A. dealbata pulps, respectively) regarding the theoretical yield. The low wood-to-ethanol conversion was associated with low pulp yield (A. dealbata pulps), high residual lignin amount (P. radiata pulps) and the low pulp consistency (2%) used for SHF and SSF. Copyright © 2007 Society of Chemical Industry [source] Membrane reactor modelling, validation and simulation for the WGS reaction using metal doped silica membranesASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2010S. Battersby Abstract In this work, a Matlab Simulink© model was developed to analyse and predict the performance of a metal doped silica membrane reactor for H2 production via both the high and low temperature water gas shift reaction. An activated transport model for mixed gas separation with combined reaction was developed to model the effects within a membrane reactor unit. The membrane reactor was modelled as a number of perfectly mixed compartments containing a catalyst bed and a gas selective membrane. The combined model provided a good fit to experimentally measured results for higher conversions up to equilibrium, which is generally the case for industrial applications. Simulation results showed that H2 separation and H2 recovery improved with pressure, due to the H2 concentration driving force across the membrane. For a single stage membrane reactor unit, a maximum conversion of 93% could be achieved with a H2 recovery rate of 95%. In addition, the membrane reactor efficiency increased at higher temperatures and lower H2O:CO feed ratios, allowing for CO conversion improvements by the membrane reactor. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source] Polyamide Synthesis from 6-Aminocapronitrile, Part 1: N -Alkyl Amide Formation by Amine Amidation of a Hydrolyzed NitrileCHEMISTRY - A EUROPEAN JOURNAL, Issue 27 2007Adrianus Abstract The synthesis of N -hexylpentanamide from a stoichiometric amount of pentanenitrile and hexylamine has been studied as a model reaction for the synthesis of nylon-6 from 6-aminocapronitrile. The reaction was carried out under mild hydrothermal conditions and in the presence of a homogeneous ruthenium catalyst. For the mild hydrothermal conditions the presence of hexylamine distinctively increases the nitrile hydrolysis compared to the nitrile hydrolysis in the absence of hexylamine. Amine-catalyzed nitrile hydrolysis mainly produces the N-substituted amide. A clear product development is observed, consisting of first the terminal amide formation and second the accumulation of N -hexylpentanamide. With a maximum conversion of only 80,% after 18,h, the nitrile hydrolysis rate at 230,°C is still much too low for nylon-6 synthesis. Ruthenium dihydride phosphine was therefore used as a homogeneous catalyst, which significantly increases the nitrile hydrolysis rate. At a temperature of 140,°C and with only 0.5,mol,% [RuH2(PPh3)4] a 60,% nitrile conversion is already reached within 2,h. Initially the terminal amide is the sole product, which is gradually converted into N -hexylpentanamide. The reaction has a high initial rate, however, for higher conversions a strong decrease in hydrolysis rate is observed. This is ascribed to product inhibition, which results from the equilibrium nature of the reaction. [source] Determination of the rate coefficients of the SO2 + O + M , SO3 + M reactionINTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 3 2010S. M. Hwang Rate coefficients of the title reaction R31 (SO2 + O + M , SO3 + M) and R56 (SO2 + HO2, SO3 + OH), important in the conversion of S(IV) to S(VI), were obtained at T = 970,1150 K and ,ave = 16.2 ,mol cm,3 behind reflected shock waves by a perturbation method. Shock-heated H2/O2/Ar mixtures were perturbed by adding small amounts of SO2 (1%, 2%, and 3%) and the OH temporal profiles were then measured using laser absorption spectroscopy. Reaction rate coefficients were elucidated by matching the characteristic reaction times acquired from the individual experimental absorption profiles via simultaneous optimization of k31 and k56 values in the reaction modeling (for satisfactory matches to the observed characteristic times, it was necessary to take into account R56). In the experimental conditions of this study, R31 is in the low-pressure limit. The rate coefficient expressions fitted using the combined data of this study and the previous experimental results are k31,0/[Ar] = 2.9 × 1035 T,6.0 exp(,4780 K/T) + 6.1 × 1024 T,3.0 exp(,1980 K/T) cm6 mol,2 s,1 at T = 300,2500 K; k56 = 1.36 × 1011 exp(,3420 K/T) cm3 mol,1 s,1 at T = 970,1150 K. Computer simulations of typical aircraft engine environments, using the reaction mechanism with the above k31,0 and k56 expressions, gave the maximum S(IV) to S(VI) conversion yield of ca. 3.5% and 2.5% for the constant density and constant pressure flow condition, respectively. Moreover, maximum conversions occur at rather higher temperatures (,1200 K) than that where the maximum k31,0 value is located (,800 K). This is because the conversion yield is dependent upon not only the k31,0 and k56 values (production flux) but also the availability of H, O, and HO2 in the system (consumption flux). © 2010 Wiley Periodicals, Inc., Int J Chem Kinet 42: 168,180, 2010 [source] |