Maximum Contaminant Level (maximum + contaminant_level)

Distribution by Scientific Domains


Selected Abstracts


Aquifer vulnerability assessment to heavy metals using ordinal logistic regression

GROUND WATER, Issue 2 2005
Navin K.C. Twarakavi
A methodology using ordinal logistic regression is proposed to predict the probability of occurrence of heavy metals in ground water. The predicted probabilities are defined with reference to the background concentration and the maximum contaminant level. The model is able to predict the occurrence due to different influencing variables such as the land use, soil hydrologic group (SHG), and surface elevation. The methodology was applied to the Sumas-Blaine Aquifer located in Washington State to predict the occurrence of five heavy metals. The influencing variables considered were (1) SHG; (2) land use; (3) elevation; (4) clay content; (5) hydraulic conductivity; and (6) well depth. The predicted probabilities were in agreement with the observed probabilities under existing conditions. The results showed that aquifer vulnerability to each heavy metal was related to different sets of influencing variables. However, all heavy metals had a strong influence from land use and SHG. The model results also provided good insight into the influence of various hydrogeochemical factors and land uses on the presence of each heavy metal. A simple economic analysis was proposed and demonstrated to evaluate the cost effects of changing the land use on heavy metal occurrence. [source]


Application of Direct Push Methods to Investigate Uranium Distribution in an Alluvial Aquifer

GROUND WATER MONITORING & REMEDIATION, Issue 4 2009
Wesley McCall
The U.S. EPA 2000 Radionuclide Rule established a maximum contaminant level (MCL) for uranium of 30 µg/L. Many small community water supplies are struggling to comply with this new regulation. At one such community, direct push (DP) methods were applied to obtain hydraulic profiling tool (HPT) logs and install small diameter wells in a section of alluvial deposits located along the Platte River. This work was conducted to evaluate potential sources of elevated uranium in the Clarks, Nebraska drinking water supply. HPT logs were used to understand the hydrostratigraphy of a portion of the aquifer and guide placement of small diameter wells at selected depth intervals. Low-flow sampling of the wells provided water quality parameters and samples for analysis to study the distribution of uranium and variations in aquifer chemistry. Contrary to expectations, the aquifer chemistry revealed that uranium was being mobilized under anoxic and reducing conditions. Review of the test well and new public water supply well construction details revealed that filter packs extended significantly above the screened intervals of the wells. These filter packs were providing a conduit for the movement of groundwater with elevated concentrations of uranium into the supply wells and the community drinking water supply. The methods applied and lessons learned here may be useful for the assessment of unconsolidated aquifers for uranium, arsenic, and many other drinking water supply contaminants. [source]


ARSENIC IN THE SHALLOW GROUND WATERS OF CONTERMINOUS UNITED STATES: ASSESSMENT, HEALTH RISKS, AND COSTS FOR MCL COMPLIANCE,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2006
Navin Kumar C. Twarakavi
ABSTRACT: A methodology consisting of ordinal logistic regression (OLR) is used to predict the probability of occurrence of arsenic concentrations in different threshold limits in shallow ground waters of the conterminous United States (CONUS) subject to a set of influencing variables. The analysis considered a number of maximum contaminant level (MCL) options as threshold values to estimate the probabilities of occurrence of arsenic in ranges defined by a given MCL of 3, 5, 10, 20, and 50 ,g/l and a detection limit of 1 ,g/l. The fit between the observed and predicted probability of occurrence was around 83 percent for all MCL options. The estimated probabilities were used to estimate the median background concentration of arsenic in the CONUS. The shallow ground water of the western United States is more vulnerable than the eastern United States. Arizona, Utah, Nevada, and California in particular are hotspots for arsenic contamination. The risk assessment showed that counties in southern California, Arizona, Florida, and Washington and a few others scattered throughout the CONUS face a high risk from arsenic exposure through untreated ground water consumption. A simple cost effectiveness analysis was performed to understand the household costs for MCL compliance in using arsenic contaminated ground water. The results showed that the current MCL of 10 ,g/l is a good compromise based on existing treatment technologies. [source]


Integrated modeling environment for statewide assessment of groundwater vulnerability from pesticide use in agriculture,

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 8 2004
Audra Eason
Abstract Atrazine, a herbicide widely used for corn production in the Midwest, has been detected in groundwater of several states, and has been identified as a possible human carcinogen. With the widespread use of pesticides in crop production, and the frequent detection of these chemicals in groundwater, large-scale risk assessments would help water resource managers to identify areas that are more susceptible to contamination and implement practices to ameliorate the problem. This paper presents an integrated, visual and interactive system for predicting potential environmental risks associated with pesticide contamination at spatial scales ranging from fields to landscapes and regions. The interactive system extends the predictive ability of the Pesticide Root Zone Model Release 2.0 (PRZM-2) to a landscape and statewide scale through integration with a geographic information system (GIS), graphical user interface and environmental databases. Predictions of statewide (Iowa) vulnerability of groundwater from atrazine leaching below the unsaturated zone were made to demonstrate the utility of the system, and the results were used in risk assessment. In the example application, atrazine fate and transport were evaluated using long-term climatic data (1980,1989) in combination with several environmental databases (eg STATSGO soils database) and exposure risks were expressed in terms of the probability of the predicted pesticide concentrations exceeding the maximum contaminant level (MCL) for drinking water. The results indicate that the predicted pesticide concentrations were significantly lower than the EPA-established MCL. In addition to providing an interactive environment for landscape-level assessment of potential risks from pesticide leaching, the system significantly reduces the time and resources needed to organize and manipulate data for use with PRZM-2, and provides an analytical framework for evaluating groundwater-leaching impacts of pesticide management practices. Copyright © 2004 Society of Chemical Industry [source]


Successful ISCR-enhanced bioremediation of a TCE DNAPL source utilizing EHC® and KB-1®

REMEDIATION, Issue 3 2010
James G. D. Peale
Remediation of chlorinated solvent DNAPL sites often meets with mixed results. This can be attributed to the diametrically opposed nature of the impacts, where the disparate dissolved-phase plume is more manageable than the localized, high-concentration source area. A wide range of technologies are available for downgradient plume management, but the relative mass of contaminants in a DNAPL source area generally requires treatment for such technologies to be effective over the long term. In many cases, the characteristics of DNAPL source zones (e.g., depth, soil heterogeneity, structural limitations) limit the available options. The following describes the successful full-scale implementation of in situ chemical reduction (ISCR) enhanced bioremediation of a TCE DNAPL source zone. In this demonstration, concentrations of TCE were rapidly reduced to below the maximum contaminant level (MCL) in less than six months following implementation. The results described herein suggest that ISCR-enhanced bioremediation is a viable remedial alternative for chlorinated solvent source zones. © 2010 Wiley Periodicals, Inc. [source]


Pilot-scale evaluation of in situ cometabolic bioremediation of TCE in groundwater using PHOSter® technology

REMEDIATION, Issue 2 2008
Karl W. Eggers
A study was conducted to evaluate the efficacy of PHOSter® technology for treating groundwater contaminated with trichloroethene (TCE) at Edwards Air Force Base, California. The technology consists of injecting a gaseous mixture of air, methane, and nutrients into groundwater with the objective of stimulating the growth of methanotrophs, a naturally occurring microbial group that is capable of catalyzing the aerobic degradation of chlorinated solvents into nontoxic products. Injection operations were performed at one well for a period of three months. Six monitoring wells were utilized for groundwater and wellhead vapor monitoring and for groundwater and microbial sampling. In the five monitoring wells located within 44 feet of the injection well, the following results were observed: dissolved oxygen concentrations increased to a range between 6 and 8 milligrams per liter (,g/L); the biomass of target microbial groups increased by one to five orders of magnitude; and TCE concentrations decreased by an average of 92 percent, and to below the California primary maximum contaminant level (MCL; 5 micrograms per liter [µg/L]) in the well closest to the injection well. © 2008 Wiley Periodicals, Inc., [source]