Maximal Inhibition (maximal + inhibition)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Cholinergic responses of ileal longitudinal muscle under short-lasting exposure to cupric ions

AUTONOMIC & AUTACOID PHARMACOLOGY, Issue 1 2008
Ch. Nachev
Summary 1 The effect of short-term exposure to cupric ions (Cu2+) on electric field-stimulated (EFS) or agonist-induced contractions of guinea-pig isolated ileum was studied. 2 EFS elicited tetrodotoxin- and atropine-sensitive contractions that were concentration dependently inhibited by Cu2+ (IC50 = 14.7 ± 4.2 ,m). Maximal inhibition (90.4 ± 3.1% of baseline contractions) was attained with 30 ,m Cu2+. 3 Carbachol induced concentration-dependent contractions (EC50 = 0.021 ± 0.004 ,m) that were inhibited by 0.3 ,m atropine to a non-competitive manner (decreased maximal response, EC50 value = 0.26 ± 0.04 ,m, Ke = 0.026 ,m). Cu2+ (15 ,m) potentiated contractions induced by carbachol, such that the maximum response was increased by 30.3 ± 10.4%. 4 Histamine induced concentration-dependent contractions of the longitudinal muscle (EC50 = 0.11 ± 0.03 ,m). Dyphenhydramine (0.1 ,m) decreased the maximum response to histamine and shifted the curve to the right (EC50 value = 4.71 ± 0.35 ,m, Ke = 0.0024 ,m). Cu2+ (15 ,m) caused a rightward shift of the histamine concentration,response curve (EC50 = 0.61 ± 0.1 ,m) without changing the maximum response. Serotonin induced concentration-dependent contractions at concentrations higher than 10 nM (EC50 value of 0.34 ± 0.12 ,m) were not significantly affected by 15 ,m Cu2+. 5 Our results suggest that in ileal longitudinal muscle, Cu2+ inhibits cholinergic neurotransmission but also facilitates postsynaptic muscarinic receptor responses. [source]


Impaired host defense to Klebsiella pneumoniae infection in mice treated with the PDE4 inhibitor rolipram

BRITISH JOURNAL OF PHARMACOLOGY, Issue 5 2003
A C Soares
The increase in levels of cAMP in leukocytes by selective inhibitors of PDE4 may result in reduction of inflammation, and may be useful in the treatment of pulmonary inflammatory disorders in humans. Here, we have assessed whether oral treatment with the prototype PDE4 inhibitor, rolipram, interfered with the antibacterial host response following pulmonary infection of mice with Klebsiella pneumoniae. K. pneumoniae infection induced a marked increase in the recruitment of neutrophils to the lungs and the production of proinflammatory cytokines and chemokines, including tumor necrosis factor- , (TNF- ,) and keratinocyte-derived chemokine (KC), in bronchoalveolar (BAL) fluid and lung tissue. There were also detectable amounts of interleukin-10 (IL-10) and significant lethality. Treatment with rolipram (3,30 mg kg,1) was associated with earlier lethality and significant inhibition of the TNF- , production. This was associated with enhanced production of IL-10 in lung tissue of rolipram-treated animals. Rolipram treatment did not affect KC expression and the recruitment of neutrophils in the lung tissue. Over 70% of neutrophils that migrated into the BAL fluid following K. pneumoniae infection ingested bacteria. Treatment with rolipram inhibited the percentage of neutrophils undergoing phagocytosis of K. pneumoniae in a dose-dependent manner. Maximal inhibition (62%) occurred at doses equal to or greater than 10 mg kg,1. Thus, treatment of mice with the PDE4 inhibitor rolipram is accompanied by earlier lethality, enhanced bacterial load and decreased capacity of the responding host to produce TNF- , and of neutrophils to phagocytose bacteria. It will be important to investigate whether the shown ability of PDE4 inhibitors to inhibit neutrophil phagocytosis and control experimental bacterial infection will translate into an inhibition of the ability of neutrophils to deal with infectious microorganisms in the clinical setting. British Journal of Pharmacology (2003) 140, 855,862. doi:10.1038/sj.bjp.0705517 [source]


More pronounced inhibition of cyclooxygenase 2, increase in blood pressure, and reduction of heart rate by treatment with diclofenac compared with celecoxib and rofecoxib

ARTHRITIS & RHEUMATISM, Issue 1 2006
Burkhard Hinz
Objective Recent findings suggest that permanent blockade of cyclooxygenase 2 (COX-2) is one factor contributing to the cardiovascular side effects of selective COX-2 inhibitors (coxibs) and nonsteroidal antiinflammatory drugs (NSAIDs). The present study compared the extent and time course of COX-2 inhibition and the effects on cardiovascular parameters (changes in blood pressure and heart rate) between various antirheumatic doses of diclofenac, celecoxib, and rofecoxib in healthy elderly volunteers. Methods A randomized, parallel-group study was conducted in volunteers receiving 75 mg diclofenac twice daily, 200 mg celecoxib twice daily, or 25 mg rofecoxib once daily for 8 days. Blood samples were obtained predose and at specified time points postdose, on days 1 and 8, for assay of drug plasma concentrations and COX-2 inhibition. Lipopolysaccharide-induced prostaglandin E2 synthesis was measured ex vivo as an index of COX-2 activity in human whole blood. Results COX-2 inhibition was significantly less pronounced after treatment with celecoxib and rofecoxib than with diclofenac. Maximal inhibitions after a single dose and at steady state, respectively, were as follows: 99% and 99% with diclofenac, 70% and 81% with celecoxib, and 56% and 72% with rofecoxib. At steady state, only diclofenac caused virtually complete COX-2 inhibition over the whole dose interval, and this corresponded to the highest increase in systolic blood pressure and greatest reduction in heart rate. Conclusion Diclofenac elicited the most pronounced COX-2 inhibition, blood pressure elevation, and suppression of heart rate. It is assumed that the extent and time course of intravascular COX-2 inhibition may determine the differential profile of cardiovascular side effects associated with NSAIDs and coxibs, but this has to be proven in future studies. [source]


Interaction of tributyltin with hepatic cytochrome P450 and uridine diphosphate-glucuronosyl transferase systems of fish: In vitro studies

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2004
Yolanda Morcillo
Abstract Hepatic microsomes of red mullet (Mullus barbatus) and flounder (Platichthys flesus) were preincubated in the presence of a concentration range of the antifouling agent tributyltin (TBT) chloride, and the interactions of TBT with cytochrome P450 and uridine diphosphate,glucuronyl transferase systems were investigated. The enzyme systems were examined in terms of cytochrome P4501A (CYP1A)-catalyzed 7-ethoxyresorufin O -deethylase (EROD) activity and benzo[a]pyrene (BaP) metabolism and in terms of glucuronidation of testosterone and 17,-estradiol, respectively. Ethoxyresorufin O -deethylase and BaP hydroxylase (BPH) activities of both fish species were progressively inhibited by increasing concentrations of TBT, and the effects were more pronounced for EROD than for BPH (maximal inhibition at 100 ,M TBT for EROD and 250,500 ,M TBT for BPH). Hydroxylated metabolites of BaP (3-hydroxy-, 7,8-dihydrodiol, and 9,10-dihydrodiol), representing 95% of the total metabolites formed, were reduced up to 75 % in the presence of 100 to 500 ,M TBT, whereas the formation of other metabolites was less affected. This may alter BaP toxicity and carcinogenicity. Overall, the results were consistent with a specific inhibitory effect of TBT on CYP1A in the two fish species. Additionally, the conjugation of testosterone was significantly inhibited (20%) at low TBT doses (5 ,M), with no effect on the glucuronidation of estradiol. [source]


Central GABAA but not GABAB Receptors Mediate Suppressive Effects of Caudal Hindbrain Glucoprivation on the Luteinizing Hormone Surge in Steroid-Primed, Ovariectomized Female Rats

JOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2005
S. R. Singh
Abstract The neurochemical mechanisms that link caudal hindbrain glucoprivic-,sensitive' neurones with the forebrain gonadotrophin-releasing hormone (GnRH)-pituitary luteinizing hormone (LH) axis remain unclear. Available studies indicate that the amino acid neurotransmitter, ,-aminobutyric acid (GABA), inhibits reproductive neuroendocrine function, and that caudal fourth ventricular administration of the glucose antimetabolite, 5-thioglucose (5TG), enhances GABA turnover within discrete septopreoptic structures that regulate LH secretion. The current experiments utilized the selective GABAA and GABAB receptor antagonists, bicuculline and phaclofen, as pharmacological tools to investigate whether one or both receptor subtypes function within neural pathways that suppress GnRH neuronal transcriptional activation and LH release during central glucose deficiency. During the ascending phase of the afternoon LH surge, groups of steroid-primed, ovariectomized female Sprague-Dawley rats were pretreated by lateral ventricular administration of bicuculline, phaclofen, or vehicle only, before fourth ventricular injection of 5TG or vehicle. The data indicate that, 2 h after 5TG treatment, Fos immunoexpression by rostral preoptic GnRH neurones and plasma LH levels were diminished relative to the vehicle-treated controls, and that inhibitory effects of 5TG on these parameters were attenuated by pretreatment with bicuculline, but not phaclofen. These results demonstrate that central GABAA, but not GABAB receptor stimulation during hindbrain glucoprivation, is required for maximal inhibition of reproductive neuroendocrine function by this metabolic challenge. The current studies thus reinforce the view that central GABAergic neurotransmission mediates regulatory effects of central glucoprivic signalling on the GnRH-pituitary LH axis. [source]


Influence of progesterone on myometrial contractility in pregnant mice treated with lipopolysaccharide

JOURNAL OF OBSTETRICS AND GYNAECOLOGY RESEARCH (ELECTRONIC), Issue 6 2007
Hiroshi Anbe
Abstract Aim:, To evaluate the effect of progesterone on interleukin (IL)-6, prostaglandin (PG) E2 and nitric oxide (NO) metabolite (NOx) production and contractile activity by NO in pregnant mice treated with lipopolysaccharide (LPS). Methods:, Pregnant C57BL mice on day 14 of gestation were killed 6 h after i.p. injection of LPS (400 ,g/kg) or vehicle. Progesterone (2 mg) was subcutaneously injected 2 h before LPS treatment. Uterine rings were equilibrated in Krebs-Henseleit solution (37°C) bubbled with 20% O2 and 5% CO2 (pH 7.4) for sampling and isometric tension recording. IL-6, PGE2 and NOx productions were measured from the bathing solution. Changes in spontaneous contractile activity in response to cumulative concentrations of l -arginine, diethylamine/nitric oxide (DEA/NO, the NO donor), and 8-bromo-cGMP (8-br-cGMP) were compared. Integral contractile activity over 10 min after each concentration was calculated and expressed as percentage change from basal activity. Statistical analyses were performed using one-way anova followed by Dunnett's test (significance was defined as P < 0.05). Results:, Interleukin-6 (34.7 ± 6.0 pg/g tissue), PGE2 (66.8 ± 6.7 pg/g tissue) and NOx (51.0 ± 5.4 pmol/2 mL/g wet tissue) production were significantly stimulated by LPS treatment (138.2 ± 23.2, 147.0 ± 29.0, 98.6 ± 16.2, respectively; P < 0.05). l -arginine, DEA/NO and 8-br-cGMP concentration-dependently inhibited spontaneous contractions in uterine rings both in LPS-treated and -untreated animals. Treatment with LPS significantly attenuated the maximal inhibition induced by l -arginine, DEA/NO and 8-br-cGMP in uterine rings from pregnant mice. Progesterone significantly decreased the levels of IL-6 production (74.9 ± 12.1, P < 0.05), but not PGE2 and NOx production, and contractile responses by l -arginine, DEA/NO and 8-br-cGMP. Conclusions:, The administration of LPS is associated with increases in IL-6, PGE2 and NO, and these increases may or may not have a role to play in LPS-induced preterm labor. Progesterone reduced the LPS-induced increase in IL-6 production and this may be one of the ways that progesterone reduces the risk of preterm labor. [source]


Chronic Intermittent Ethanol Exposure During Adolescence Blocks Ethanol-Induced Inhibition of Spontaneously Active Hippocampal Pyramidal Neurons

ALCOHOLISM, Issue 1 2006
Sayaka Tokunaga
Background: Binge alcohol drinking among adolescents has been a serious public health problem. A model of binge alcohol, chronic intermittent ethanol exposure (CIEE), during adolescence significantly attenuates ethanol-induced spatial memory deficits in rats. However, the attenuation was absent following a 12-day ethanol-free period. Since spatial memory is hippocampal dependent, a reduction in ethanol-induced spatial memory impairments may be due to a reduction in the ability of ethanol to inhibit the firing rate of single hippocampal pyramidal neurons following CIEE. Methods: Beginning on postnatal day 30 (P30), male adolescent Sprague-Dawley rats (Harlan) were administered 5.0 g/kg ethanol (n=10, CIEE-treated group) or an equivolume saline (n=10, CISE-treated group) every 48 hours for 20 days. Single hippocampal pyramidal neurons from 5 CIEE-treated rats and 5 CISE-treated rats were recorded on the day following completion of the chronic intermittent exposure procedure (animals now P50). Additionally, neurons from 5 CIEE-treated rats and 5 CISE-treated rats were recorded 12 days after the completion of the chronic intermittent exposure procedure (animals now P62). Results: Ethanol exposure during adolescence completely blocked ethanol-induced inhibition of hippocampal pyramidal neurons in rats that were CIEE exposed. However, the effect of CIEE on hippocampal neurophysiology was time dependent. Specifically, neurons recorded from CIEE-treated rats after a 12-day ethanol-free period had similar maximal inhibition as neurons from CISE-treated animals, although the time to reach inhibition was significantly greater in neurons from CIEE-treated rats. Conclusion: Chronic ethanol exposure during adolescence produces a reduction, or tolerance, to ethanol-induced inhibition of hippocampal pyramidal neural activity. Although the tolerance was greatly reversed after a 12-day ethanol-free period, neurons from CIEE animals inhibited slower than neurons from CISE animals. Since the hippocampus is known to be involved not only in spatial memory, but also in many other types of memory formation, the altered hippocampal functions because of CIEE during adolescence should be taken as a serious warning for society. [source]


Regulation of platelet activating factor-induced equine platelet activation by intracellular kinases

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 2 2009
A. C. BROOKS
Lipopolysaccharide (LPS) can activate equine platelets directly or indirectly, via leukocyte-derived platelet activating factor (PAF). Thromboxane (Tx) production by LPS-stimulated equine platelets requires p38 MAPK and this kinase has been suggested as a therapeutic target in endotoxaemia. The present study has utilised selective inhibitors to investigate the role of p38 MAPK and two other kinases, phosphatidylinositol-3 kinase (PI3K) and protein kinase C (PKC), in regulating PAF-induced Tx production, aggregation and 5-HT release in equine platelets, and the modification of these responses by LPS. LPS enhanced PAF-induced 5-HT release, an effect that was reduced by the p38 MAPK inhibitor, SB203580 (60 ± 8% reduction; n = 6). SB203580 did not affect responses to PAF alone; whereas inhibition of PKC reduced PAF-induced 5-HT release, Tx production and aggregation (maximal inhibition by the PKC, inhibitor, rottlerin: 69 ± 13%, 63 ± 14% and 97 ± 1%, respectively; n = 6). Wortmannin and LY249002, which inhibit PI3K, also caused significant inhibition of PAF-induced aggregation (maximal inhibition 78 ± 3% and 88 ± 2%, respectively; n = 6). These data suggest that inhibition of platelet p38 MAPK may be of benefit in equine endotoxaemia by counteracting some of the effects of LPS. However, detrimental effects of platelet activation mediated by PAF and not enhanced by LPS are unlikely to be markedly affected. [source]


Beta-3 versus beta-2 adrenergic agonists and preterm labour: in vitro uterine relaxation effects

BJOG : AN INTERNATIONAL JOURNAL OF OBSTETRICS & GYNAECOLOGY, Issue 6 2001
Michael C. Dennedy
Objective 1. To investigate the effects of the selective beta-3 adrenoreceptor agonist, BRL 37344, on human pregnant myometrial contractility in vitro. 2. to compare these effects with those of the beta-2 adrenoreceptor agonist, ritodrine. Methods Isometric tension recording was performed under physiological conditions in isolated myometrial strips from biopsies obtained at elective caesarean section. Following pre-incubation with oxytocin (10 -9 M), the effects of cumulative additions of BRL 37344 or ritodrine (10 -8,10 -3.5 M) on myometrial contractility were investigated. Results were expressed as -log EC50 (pD2) and mean maximal inhibition achieved for both drug compounds. Results BRL 37344 exerted a concentration dependant relaxant effect on myometrial contractions in all strips exposed [pD2, 7.26 (0.48) (SEM); mean maximal inhibition 61.98 (4.89%); n= 6]. Similarly, ritodrine exerted a concentration dependant inhibition of myometrial contractility in all strips exposed [pD2= 7.40 (0.28); mean maximal inhibition 59.49 (3.97%); n= 6]. There was no significant difference between calculated pD2 values (P= 0.65) or mean maximal inhibition achieved (P= 0.79). Conclusions The beta-3 adrenoreceptor agonist BRL 37344 induced relaxation of human myometrial contractions with similar potency to that of the most commonly used tocolytic agent ritodrine. This raises the possibility that the novel beta-3 adrenoreceptor agonists may have potential as therapeutic agents for human preterm labour. In view of their reported reduced cardiovascular side effects their potential clinical use requires further evaluation. [source]


Characterization of an anandamide degradation system in prostate epithelial PC-3 cells: synthesis of new transporter inhibitors as tools for this study

BRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2004
Lidia Ruiz-Llorente
The response of anandamide is terminated by a carrier-mediated transport followed by degradation catalyzed by the cloned enzyme fatty acid amidohydrolase (FAAH). In this study, we provide biochemical data showing an anandamide uptake process and the expression of FAAH in human prostate. Anandamide was accumulated in PC-3 cells by a saturable and temperature-dependent process. Kinetic studies of anandamide uptake, determined in the presence of cannabinoid and vanilloid antagonists, revealed apparent parameters of KM=4.7±0.2 ,M and Vmax=3.3±0.3 pmol min,1 (106 cells),1. The accumulation of anandamide was moderately inhibited by previously characterized anandamide transporter inhibitors (AM404, UCM707 and VDM11) but was unaffected by inhibitors of other lipid transport systems (phloretin or verapamil) and moderately affected by the FAAH inhibitor methyl arachidonyl fluorophosphonate. The presence of FAAH in human prostate epithelial PC-3 cells was confirmed by analyzing its expression by Western blot and measuring FAAH activity. To further study the structural requirements of the putative carrier, we synthesized a series of structurally different compounds 1,8 and evaluated their capacity as uptake inhibitors. They showed different inhibitory capacity in PC-3 cells, with (9Z,12Z)- N -(fur-3-ylmethyl)octadeca-9,12-dienamide (4, UCM119) being the most efficacious, with maximal inhibition and IC50 values of 49% and 11.3±0.5 ,M, respectively. In conclusion, PC-3 cells possess a complete inactivation system for anandamide formed by an uptake process and the enzyme FAAH. These results suggest a possible physiological function of anandamide in the prostate, reinforcing the role of endocannabinoid system as a neuroendocrine modulator. British Journal of Pharmacology (2004) 141, 457,467. doi:10.1038/sj.bjp.0705628 [source]


Iso-S -petasin, a hypotensive sesquiterpene from Petasites formosanus, depresses cardiac contraction and intracellular Ca2+ transients in adult rat ventricular myocytes

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 1 2003
Lucy B. Esberg
ABSTRACT Petasites formosanus is an indigenous species of the medicinal plant Petasites which has been used to treat hypertension. Both S -petasin and its isoform iso-S -petasin have been shown to be the effective ingredients in P. formosanus. However, their effect on heart function has not been revealed. This study was to examine the effect of iso-S -petasin on cardiac contractile function at the myocyte level. Ventricular myocytes were isolated from adult rat hearts and were stimulated to contract at 0.5 Hz under 1.0 mm extracellular Ca2+. Contractile properties were evaluated using an lonOptix MyoCam system including peak shortening (PS), time to PS (TPS), time to 90% re-lengthening (TR90) and maximal velocity of shortening/re-lengthening (±dL/dt). Intracellular Ca2+ properties were assessed by fura-2 and presented as Ca2+ -induced Ca2+ release (CICR) and intracellular Ca2+ decay. Acute application of iso-S -petasin (10,7 to 10,4 M) elicited a concentration-dependent inhibition in PS and CICR, with maximal inhibitions of 51.0% and 31.0%, respectively. iso-S -petasin also induced a concentration-dependent inhibition of ± dL/dt without affecting TPS, TR90, baseline intracellular Ca2+ level or intracellular Ca2+ decay. Elevation of extracellular Ca2+ from 1.0 mm to 2.7 mm significantly antagonized the iso-S -petasin-induced depression in PS and CICR. These results demonstrated a direct depressant action of iso-S -petasin on ventricular contraction, which may work in concert with its antihypertensive action to reduce the cardiac load. The iso-S -petasin-induced decrease in CICR may play a role in its cardiac depressant effect. [source]