Maximal Activity (maximal + activity)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Pinealectomy reduces hepatic and muscular glycogen content and attenuates aerobic power adaptability in trained rats

JOURNAL OF PINEAL RESEARCH, Issue 1 2007
Cristina das Neves Borges-Silva
Abstract:, The current study emphasizes the crucial role of the pineal gland on the effects of chronic training in different tissues focusing on carbohydrate metabolism. We investigated the maximal oxygen uptake (aerobic power), muscle and liver glycogen content, and also the enzymes involved in the carbohydrate metabolism of rat adipose tissue. Pinealectomized and sham-operated adult male Wistar rats were distributed into four groups: pinealectomized (PINX) untrained, pinealectomized trained, control untrained and control trained. The maximal oxygen uptake capability was assayed before and after the training protocol by indirect open circuit calorimetry. The rats were killed after 8 wk of training. Blood samples were collected for glucose and insulin determinations. The glycogen content was assayed in the liver and muscle. Maximal activities of epididymal adipose tissue enzymes (hexokinase, pyruvate kinase, lactate dehydrogenase, citrate synthase and malic enzyme) as well as adipocyte size were determined. The exercise training in control animals promoted an increase in the aerobic power and in liver glycogen content but caused a reduction in the malic enzyme activity in adipose tissue. However, PINX trained animals, in contrast to trained controls, showed a decrease in the aerobic power and in liver and muscle glycogen content, as well as an increase in the activity of the adipocyte enzymes involved in carbohydrate metabolism. In conclusion, these data show that the pineal gland integrity is necessary for the homeostatic control of energy metabolism among adipose, muscle and hepatic tissues. The pinealectomized animals showed alterations in adaptive responses of the maximal oxygen uptake to training. Therefore, the pineal gland must be considered an influential participant in the complex adaptation to exercise and is involved in the improvement of endurance capacity. [source]


Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen

EXPERIMENTAL PHYSIOLOGY, Issue 2 2010
Wee Kian Yeo
We have previously demonstrated that well-trained subjects who completed a 3 week training programme in which selected high-intensity interval training (HIT) sessions were commenced with low muscle glycogen content increased the maximal activities of several oxidative enzymes that promote endurance adaptations to a greater extent than subjects who began all training sessions with normal glycogen levels. The aim of the present study was to investigate acute skeletal muscle signalling responses to a single bout of HIT commenced with low or normal muscle glycogen stores in an attempt to elucidate potential mechanism(s) that might underlie our previous observations. Six endurance-trained cyclists/triathletes performed a 100 min ride at ,70% peak O2 uptake (AT) on day 1 and HIT (8 × 5 min work bouts at maximal self-selected effort with 1 min rest) 24 h later (HIGH). Another six subjects, matched for fitness and training history, performed AT on day 1 then 1,2 h later, HIT (LOW). Muscle biopsies were taken before and after HIT. Muscle glycogen concentration was higher in HIGH versus LOW before the HIT (390 ± 28 versus 256 ± 67 ,mol (g dry wt),1). After HIT, glycogen levels were reduced in both groups (P < 0.05) but HIGH was elevated compared with LOW (229 ± 29 versus 124 ± 41 ,mol (g dry wt),1; P < 0.05). Phosphorylation of 5,AMP-activated protein kinase (AMPK) increased after HIT, but the magnitude of increase was greater in LOW (P < 0.05). Despite the augmented AMPK response in LOW after HIT, selected downstream AMPK substrates were similar between groups. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was unchanged for both groups before and after the HIT training sessions. We conclude that despite a greater activation AMPK phosphorylation when HIT was commenced with low compared with normal muscle glycogen availability, the localization and phosphorylation state of selected downstream targets of AMPK were similar in response to the two interventions. [source]


Muscle mitochondrial activity increases rapidly after an endotoxin challenge in human volunteers

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 3 2009
K. FREDRIKSSON
Background: Mitochondrial derangements in muscle of patients suffering from sepsis have been established in several studies and have been related to muscle dysfunction and organ failure. It is not possible to study the early phase of sepsis in patients; therefore, we used a human endotoxaemia model to study the effect of early sepsis on muscle mitochondria. Methods: Seven healthy male volunteers received a standardised endotoxin challenge. Muscle biopsies were obtained immediately before the challenge, and at 2 and 4 h following the endotoxin challenge. The muscle biopsies were analysed for maximal activities of citrate synthase and complexes I and IV of the respiratory chain. In addition, total and mitochondrial superoxide dismutase (SOD) activities were analysed. The concentrations of ATP, creatine phosphate and lactate were analysed to assess the cellular energy status. Total and phosphorylated AMP-activated protein kinase (AMPK-P), a key regulator in intracellular energy metabolism, was measured. Results: Activities of citrate synthase and complex I were significantly increased 2 h after the endotoxin challenge. SOD activities were unaffected by the endotoxin challenge. No changes in ATP, creatine phosphate or lactate were observed. Neither total nor AMPK-P changed. Conclusions: An endotoxin challenge given to healthy volunteers rapidly increases mitochondrial enzyme activity in skeletal muscle. The results of this human model indicate that possibly early during sepsis, mitochondrial activity might be increased in contrast to what has been shown in the later phases of sepsis. It is possible that this early activation leads to exhaustion of the mitochondria and a decreased function later during sepsis. [source]


Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana

PLANT CELL & ENVIRONMENT, Issue 7 2006
VITTORIA DI MARTINO RIGANO
ABSTRACT Temperature responses of nitrate reductase (NR) were studied in the psychrophilic unicellular alga, Koliella antarctica, and in the mesophilic species, Chlorella sorokiniana. Enzymes from both species were purified to near homogeneity by Blue Sepharose (Pharmacia, Uppsala, Sweden) affinity chromatography and high-resolution anion-exchange chromatography (MonoQ; Pharmacia; Uppsala, Sweden). Both enzymes have a subunit molecular mass of 100 kDa, and K. antarctica NR has a native molecular mass of 367 kDa. NR from K. antarctica used both NADPH and NADH, whereas NR from C. sorokiniana used NADH only. Both NRs used reduced methyl viologen (MVH) or benzyl viologen (BVH). In crude extracts, maximal NADH and MVH-dependent activities of cryophilic NR were found at 15 and 35 °C, respectively, and retained 77 and 62% of maximal activity, respectively, at 10 °C. Maximal NADH and MVH-dependent activities of mesophilic NR, however, were found at 25 and 45 °C, respectively, with only 33 and 23% of maximal activities being retained at 10 °C. In presence of 2 µm flavin adenine dinucleotide (FAD), activities of cryophilic NADH:NR and mesophilic NADH:NR were stable up to 25 and 35 °C, respectively. Arrhenius plots constructed with cryophilic and mesophilic MVH:NR rate constants, in both presence or absence of FAD, showed break points at 15 and 25 °C, respectively. Essentially, similar results were obtained for purified enzymes and for activities measured in crude extracts. Factors by which the rate increases by raising temperature 10 °C (Q10) and apparent activation energy (Ea) values for NADH and MVH activities measured in enzyme preparations without added FAD differed slightly from those measured with FAD. Overall thermal features of the NADH and MVH activities of the cryophilic NR, including optimal temperatures, heat inactivation (with/without added FAD) and break-point temperature in Arrhenius plots, are all shifted by about 10 °C towards lower temperatures than those of the mesophilic enzyme. Transfer of electrons from NADH to nitrate occurs via all three redox centres within NR molecule, whereas transfer from MVH requires Mo-pterin prosthetic group only; therefore, our results strongly suggest that structural modification(s) for cold adaptation affect thermodynamic properties of each of the functional domains within NR holoenzyme in equal measure. [source]


Rosiglitazone increases fatty acid oxidation and fatty acid translocase (FAT/CD36) but not carnitine palmitoyltransferase I in rat muscle mitochondria

THE JOURNAL OF PHYSIOLOGY, Issue 6 2008
Carley R. Benton
Peroxisome proliferator-activated receptors (PPARs) alter the expression of genes involved in regulating lipid metabolism. Rosiglitazone, a PPAR, agonist, induces tissue-specific effects on lipid metabolism; however, its mode of action in skeletal muscle remains unclear. Since fatty acid translocase (FAT/CD36) was recently identified as a possible regulator of skeletal muscle fatty acid transport and mitochondrial fatty acid oxidation, we examined in this tissue the effects of rosiglitazone infusion (7 days, 1 mg day,1) on FAT/CD36 mRNA and protein, its plasmalemmal content and fatty acid transport. In addition, in isolated subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria we examined rates of fatty acid oxidation, FAT/CD36 and carnitine palmitoyltransferase I (CPTI) protein, and CPTI and ,-hydroxyacyl CoA dehydrogenase (,-HAD) activities. Rosiglitazone did not alter FAT/CD36 mRNA or protein expression, FAT/CD36 plasmalemmal content, or the rate of fatty acid transport into muscle (P > 0.05). In contrast, rosiglitazone increased the rates of fatty acid oxidation in both SS (+21%) and IMF mitochondria (+36%). This was accompanied by concomitant increases in FAT/CD36 in subsarcolemmal (SS) (+43%) and intermyofibrillar (IMF) mitochondria (+46%), while SS and IMF CPTI protein content, and CPTI submaximal and maximal activities (P > 0.05) were not altered. Similarly, citrate synthase (CS) and ,-HAD activities were also not altered by rosiglitazone in SS and IMF mitochondria (P > 0.05). These studies provide another example whereby changes in mitochondrial fatty oxidation are associated with concomitant changes in mitochondrial FAT/CD36 independent of any changes in CPTI. Moreover, these studies identify for the first time a mechanism by which rosiglitazone stimulates fatty acid oxidation in skeletal muscle, namely the chronic, subcellular relocation of FAT/CD36 to mitochondria. [source]


Atrial natriuretic peptide-dependent photolabeling of a regulatory ATP-binding site on the natriuretic peptide receptor-A

FEBS JOURNAL, Issue 21 2005
Simon Joubert
The natriuretic peptide receptor-A (NPR-A) is composed of an extracellular ligand-binding domain, a transmembrane-spanning domain, a kinase homology domain (KHD) and a guanylyl cyclase domain. Because the presence of ATP or adenylylimidodiphosphate reduces atrial natriuretic peptide (ANP) binding and is required for maximal guanylyl cyclase activity, a direct interaction of ATP with the receptor KHD domain is plausible. Therefore, we investigated whether ATP interacts directly with a binding site on the receptor by analyzing the binding of a photoaffinity analog of ATP to membranes from human embryonic kidney 293 cells expressing the NPR-A receptor lacking the guanylyl cyclase moiety (,GC). We demonstrate that this receptor (NPR-A-,GC) can be directly labeled by 8-azido-3,-biotinyl-ATP and that labeling is highly increased following ANP treatment. The mutant receptor ,KC, which does not contain the KHD, is not labeled. Photoaffinity labeling of the NPR-A-,GC is reduced by 50% in the presence of 550 µm ATP, and competition curve fitting studies indicate a Hill slope of 2.2, suggestive of cooperative binding. This approach demonstrates directly that the interaction of ANP with its receptor modulates the binding of ATP to the KHD, probably through a conformational change in the KHD. In turn, this conformational change is essential for maximal activity. In addition, the ATP analog, 8-azido-adenylylimidodiphosphate, inhibits guanylyl cyclase activity but increases ANP binding to the extracellular domain. These results suggest that the KHD regulates ANP binding and guanylyl cyclase activity independently. [source]


Kinetic evidences for facilitation of peptide channelling by the proteasome activator PA28

FEBS JOURNAL, Issue 20 2000
Ralf Stohwasser
The activation kinetics of constitutive and IFN,-stimulated 20S proteasomes obtained with homomeric (recPA28,, recPA28,) and heteromeric (recPA28,,) forms of recombinant 11S regulator PA28 was analysed by means of kinetic modelling. The activation curves obtained with increasing concentrations of the individual PA28 subunits (RecP28,/RecP28,/RecP28,+ RecP28,) exhibit biphasic characteristics which can be attributed to a low-level activation by PA28 monomers and full proteasome activation by assembled activator complexes. The dissociation constants do not reveal significant differences between the constitutive and the immunoproteasome. Intriguingly, the affinity of the proteasome towards the recPA28,, complex is about two orders of magnitude higher than towards the homomeric PA28, and PA28, complexes. Striking similarities can been revealed in the way how PA28 mediates the kinetics of latent proteasomes with respect to three different fluorogenic peptides probing the chymotrypsin-like, trypsin-like and peptidylglutamyl-peptide hydrolyzing like activity: (a) positive cooperativity disappears as indicated by a lack of sigmoid initial parts of the kinetic curves, (b) substrate affinity is increased, whereby (c), the maximal activity remains virtually constant. As these kinetic features are independent of the peptide substrates, we conclude that PA28 exerts its activating influence on the proteasome by enhancing the uptake (and release) of shorter peptides. [source]


Leptin stimulates uncoupling protein-2 mRNA expression and Krebs cycle activity and inhibits lipid synthesis in isolated rat white adipocytes

FEBS JOURNAL, Issue 19 2000
Rolando B. Ceddia
The treatment of rats and mice with leptin causes dramatic body fat reduction and in some cases even disappearance of fat tissue. Here, we report the effects of leptin (10 and 100 ng·mL,1) on isolated rat adipocytes maintained for 15 h in culture. Leptin decreased the incorporation of acetate into total lipids by 30%. A reduction in this incorporation (42%) was still observed after the leptin-cultivated adipocytes were exposed to a supra-physiological insulin concentration (10 000 µU·mL,1). On the other hand, leptin increased acetate degradation by 69% and the maximal activity of citrate synthase by 50% in isolated adipocytes. It also increased oleate degradation by 35 and 50% at concentrations of 10 and 100 ng·mL,1, respectively. Eventually, leptin upregulated the uncoupling protein-2 (UCP2) mRNA level by 63% and had no effect on uncoupling protein-3 (UCP3) mRNA in isolated adipocytes. The upregulation of UCP2 mRNA might have contributed to the stimulation of acetate and fatty acid degradation by leptin. The peripheral effects of leptin observed in this study are in line with the general energy dissipating role postulated for this hormone and for UCP2. They suggest mechanisms by which adipocytes regulate their fat content by an autocrine pathway without the participation of the central nervous system. [source]


Characterization of a novel fibroblast-like cell line from rainbow trout and responses to sublethal anoxia

JOURNAL OF FISH BIOLOGY, Issue 4 2004
C. G. Ossum
A novel fibroblast-like cell line RTHDF was established from hypodermal connective tissue of rainbow trout Oncorhynchus mykiss and telomerase activity was demonstrated early and late in cell line development. When RTHDF cells were exposed to bioenergetic stress, i.e. anoxia, activation of the stress activated member of the mitogen-activated protein kinase family, p38MAPK and induction of heat shock protein (Hsp70) were evident. The time-course of the p38MAPK activation and the induction of Hsp70 expression in RTHDF were studied in response to chemically induced anoxia. p38MAPK was activated rapidly, with maximal activity after 10 min of anoxia. Hsp70 was induced after 30 min of anoxia, followed by overnight recovery in growth medium at 21° C. Using the p38MAPK -specific inhibitor SB203580, the enhanced expression of Hsp70 occurred independently of p38MAPK activation in RTHDF. These data suggests that RTHDF can be useful in studying biochemical responses of teleost cells to environmental stress. [source]


PURIFICATION AND CHARACTERIZATION OF ,-CARRAGEENASE FROM MARINE BACTERIUM MUTANT STRAIN PSEUDOALTEROMONAS SP.

JOURNAL OF FOOD BIOCHEMISTRY, Issue 3 2010
AJ5-13 AND ITS DEGRADED PRODUCTS
ABSTRACT A ,-carrageenan-degrading bacterial strain AJ5 isolated from the intestine of Apostichopus japonicus was identified as Pseudoalteromonas sp. based on the phenotypic characters and 16S rRNA gene sequencing. The mutant Pseudoalteromonas sp. AJ5-13 with ,-carrageenase activity of 61 U/mg protein was obtained from Pseudoalteromonas sp. AJ5 using mutagenesis technique. An extracellular ,-carrageenase was purified from Pseudoalteromonas sp. AJ5-13 cultural supernatant by ammonium sulfate fractionation, gel filtration chromatography (Sephadex G-200) and cation-exchange chromatography (CM-cellulose 52). The purified enzyme yielded a single band on SDS-PAGE with the molecular mass of 35 kDa. Data of the N-terminal amino acid sequence indicated that this protein might be a novel ,-carrageenase. The pI and Km of the enzyme were 8.5 and 9.8 ± 0.2 mg/mL, respectively. The enzyme exhibited maximal activity at pH 8.0 and 55C. It hydrolyzed the ,-1, 4-glycosidic linkages of ,-carrageenan yielding ,-neocarrabiose, -tetraose, -hexaose, -octaose and -decaose sulfates as the main end-products. PRACTICAL APPLICATIONS ,-Carrageenases degrade ,-carrageenan by hydrolyzing the ,-1,4 linkages to a series of oligosaccharides. Thus, it is expected that like other ,-carrageenases, the ,-carrageenase isolated from Pseudoalteromonas sp. AJ5-13 would also be useful in seaweed biotechnology, pharmacy and immunology. ,-Carrageenases can be applied to study the composition and structure of carrageenans from different red alga, and to study the bacterial ,-carrageenan metabolism. They also provide the opportunity to investigate the structure-function relationship of the hydrolases that degrade self-associating sulfated polysaccharides. Examples of the practical applications of ,-carrageenases include their use in degrading the cell walls of seaweeds to obtain protoplasts, and in hydrolyzing ,-carrageenan to produce oligosaccharides. ,-Carrageenan-oligosaccharides have various potential biological properties, such as antiviral, antitumor, antioxidant activities, cytoprotection, immunomodulation, etc. [source]


PRODUCTION AND BIOCHEMICAL CHARACTERIZATION OF SCLEROTINIA SCLEROTIORUM ,-AMYLASE ScAmy1: ASSAY IN STARCH LIQUEFACTION TREATMENTS

JOURNAL OF FOOD BIOCHEMISTRY, Issue 5 2008
IMEN BEN ABDELMALEK KHEDHER
ABSTRACT Among the lytic enzymes secreted by the phytopathogen fungus Sclerotinia sclerotiorum, a starch-degrading activity has been isolated and characterized. Two extracellular ,-amylases were produced in culture medium in presence of oats flour as carbons sources. An endoamylase named ScAmy1 was purified to homogeneity by ammonium sulfate precipitation, phosphocellulose and cation exchange high performance liquid chromatographies. Molecular mass of purified ScAmy1 was estimated as 54 kDa. Amylase exhibits maximal activity at pH 5 to 6 and at temperature 60C. ScAmy1 was stable in a pH range of (5,11) and at 50C. Initial activity was still conserved 40%, after heating at 60C during 30 min. In addition, Ca2+activate and stabilize the enzyme. Starch end products were determined as low molecular oligoglucanes, the liquefying power of ScAmy1 was also tested with the Amylograph Brabender, results suggest a suitable application of ScAmy1 in several industrial process. PRACTICAL APPLICATIONS ,-Amylase ScAmy1 was highly produced from Sclerotinia sclerotiorum on oats flour , a cheaper by-agro-substrate product. The enzyme was purified and biochemical characterized. ScAmy1 was applied in starch liquefaction treatments assay. The enzyme allows a decrease in peak viscosity after gelatinization and therefore has an important liquefying power. ScAmy1 has a nearly liquefaction effect on flour compared to the commercial enzyme Novamyl, from Novozymes, donated by Novo Nordisk Co. (Denmark). Enzyme end products were analyzed and identified as oligoglucanes and dextrins. Those are widely applied in food, paper, textile and pharmacological industries. Oligosaccharides are useful as prebiotics as dietary fiber or slowly digestible starch derivatives, and they can be used in form of supplement to certain foodstuffs. [source]


Tuna Pepsin: Characteristics and Its Use for Collagen Extraction from the Skin of Threadfin Bream (Nemipterus spp.)

JOURNAL OF FOOD SCIENCE, Issue 5 2008
S. Nalinanon
ABSTRACT:, Pepsin from the stomach of albacore tuna, skipjack tuna, and tongol tuna was characterized. Pepsin from all tuna species showed maximal activity at pH 2.0 and 50 °C when hemoglobin was used as a substrate. Among the stomach extract of all species tested, that of albacore tuna showed the highest activity (40.55 units/g tissue) (P < 0.05). Substrate-Native-PAGE revealed that pepsin from albacore tuna and tongol tuna consisted of 2 isoforms, whereas pepsin from skipjack tuna had only 1 form. The activity was completely inhibited by pepstatin A, while EDTA (ethylenediaminetetraacetic acid), SBTI (soybean trypsin inhibitor), and E-64 (1-(L -trans-epoxysuccinyl-leucylamino)-4-guanidinobutane) exhibited negligible effect. The activity was strongly inhibited by SDS (sodium dodecyl sulfate) (0.05% to 0.1%, w/v). Cysteine (5 to 50 mM) also showed an inhibitory effect in a concentration dependent manner. ATP, molybdate, NaCl, MgCl2, and CaCl2 had no impact on the activity. When tuna pepsin (10 units/g defatted skin) was used for collagen extraction from the skin of threadfin bream for 12 h, the yield of collagen increased by 1.84- to 2.32-fold and albacore pepsin showed the comparable extraction efficacy to porcine pepsin. The yield generally increased with increasing extraction time (P < 0.05). All collagen obtained with the aid of tuna pepsin showed similar protein patterns compared with those found in acid-solubilized collagen. Nevertheless, pepsin from skipjack tuna caused the degradation of , and , components. All collagens were classified as type I with large portion of ,-chain. However, proteins with molecular weight (MW) greater than 200 kDa were abundant in acid-solubilized collagen. [source]


Reduced lipolysis and increased lipogenesis in adipose tissue from pinealectomized rats adapted to training

JOURNAL OF PINEAL RESEARCH, Issue 2 2005
Cristina N. Borges-Silva
Abstract:, The current study investigated the effects of chronic training and pinealectomy on the lipogenic and lipolytic activity of adipose tissue. Pinealectomized and sham-operated adult male Wistar rats were distributed in to four subgroups: pinealectomized untrained, pinealectomized trained, control untrained and control trained. At the end of the training period (8 wk) the rats were killed. Blood samples were collected for glucose, insulin and leptin determinations. Peri-epididymal adipocytes were isolated for measurement of in vitro rates of lipolysis and incorporation of substrates (d -[U- 14C]-glucose, l -[U- 14C]-lactate, [2- 14C]-acetate and [1- 14C]-palmitate) into lipids, and samples of epididymal adipose tissue were homogenized for evaluation of glucose-6-phosphate dehydrogenase maximal activity. Pinealectomy resulted in a significantly increased lipolytic capacity in response to isoproterenol and a decrease in circulating leptin levels without affecting the rates of incorporation of different substrates into lipids. However, only in the intact control group did training promote a higher basal and isoproterenol-stimulated lipolysis, increase the incorporation of palmitate (esterification), decrease the incorporation of acetate (lipogenesis) into lipids and diminish circulating leptin levels. These effects of exercise training were not seen in pinealectomized rats. However, pinealectomized trained animals showed a marked reduction in lipolysis and an increased rate of acetate incorporation. In conclusion, we demonstrated for the first time that the pineal gland plays an important role in the regulation of lipid metabolism in such a way that its absence caused a severe alteration in the balance between lipogenesis and lipolysis, which becomes evident with the adaptation to exercise training. [source]


Kinetic behaviour and stability of Escherichia coli ATCC27257 alkaline phosphatase immobilised in soil humates

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 3 2003
María C Pilar
Abstract Alkaline phosphatase (EC 3.1.3.1) extracted from Escherichia coli ATCC27257 was immobilised by co-flocculation with soil humates in the presence of Ca2+. The effects of time, temperature, pH and concentration of enzyme and support on immobilisation were studied. Between 58 and 92% of the added phosphatase was strongly bound to the humates, depending on the conditions of immobilisation used. Some characteristics of the humate,phosphatase complexes and of the free enzyme were compared. The enzymatic complexes showed values of Km (2.22,mM) and activation energy (33.4,kJ,mol,1) similar to those of the free enzyme (2.00,mM and 27.6,kJ,mol,1). The pH/activity profiles revealed no change in terms of shape or optimum pH (10.5) upon immobilisation of alkaline phosphatase. However, the immobilised enzyme showed maximal activity in the range of 80,100,°C, while the free enzyme had its highest activity at 60,°C. The thermal stability of alkaline phosphatase was enhanced by complexation to the soil humates. © 2003 Society of Chemical Industry [source]


Arabidopsis protein repair l -isoaspartyl methyltransferases: predominant activities at lethal temperatures

PHYSIOLOGIA PLANTARUM, Issue 4 2006
Sarah T. Villa
Protein l -isoaspartyl (d -aspartyl) O -methyltransferases (Enzyme Commission (EC) 2.1.1.77; PIMT or PCMT) are enzymes that initiate the full or partial repair of damaged l -aspartyl and l -asparaginyl residues, respectively. These enzymes are found in most organisms and maintain a high degree of sequence conservation. Arabidopsis thaliana (Arabidopsis L. Heynh.) is unique among eukaryotes in that it contains two genes, rather than one, that encode PIMT isozymes. We describe a novel A. thaliana PIMT isozyme, designated AtPIMT2,,, encoded by the PIMT2 gene (At5g50240). We characterized the enzymatic activity of the recombinant AtPIMT2,, in comparison to the other AtPIMT2 isozymes, AtPIMT1, and to the human PCMT1 ortholog, to better understand its role in Arabidopsis. All Arabidopsis PIMT isozymes are active over a relatively wide pH range. For AtPIMT2,, maximal activity is observed at 50°C (a lethal temperature for Arabidopsis); this activity is almost 10 times greater than the activity at the growth temperature of 25°C. Interestingly, enzyme activity decreases after pre-incubation at temperatures above 30°C. A similar situation is found for the recombinant AtPIMT2, and the AtPIMT2, isozymes, as well as for the AtPIMT1 and human PCMT1 enzymes. These results suggest that the short-term ability of these methyltransferases to initiate repair under extreme temperature conditions may be a common feature of both the plant and animal species. [source]


Topical application of Pya -AKH stimulates lipid mobilization and locomotion in the flightless bug, Pyrrhocoris apterus (L.) (Heteroptera)

PHYSIOLOGICAL ENTOMOLOGY, Issue 1 2002
Dalibor Kodrík
Abstract Two different methods of applying Pya -AKH to long-winged (macropterous) females of the firebug, Pyrrhocoris apterus (Linnaeus) (Heteroptera) were compared: both injection and topical application increased the levels of lipids in the haemolymph and stimulated locomotor activity. Lipid mobilization was maximal when 10 pmol was applied by injection or 40,100 pmol by topical application, with the first significant responses occurring 1.5 h after injection and 2 h after topical application. The highest elevations of lipid concentration in the haemolymph were comparable between the treatments, i.e. 14.36 ± 3.59 mg/mL for injection and 14.43 ± 4.07 mg/mL for topical application. However, these maximal elevations were achieved at different times: 3 h after the injection and 7 h after the topical application. Injection of 10 and 40 pmol of Pya -AKH stimulated locomotor activity with maximal activity 3 h later but, surprisingly, injection of 80 pmol showed no effect initially and than a slight inhibitory effect after 6,8 h. Increased locomotor activity was found after topical application of Pya -AKH, but the response was lower than after injection and appeared later, 5,9 h after the hormone application. In addition, the greatest increase in walking activity required topical application of 300 pmol and was still less dramatic than the response to injection. The stimulatory effect of Pya -AKH on locomotion was positively correlated with its effect on lipid mobilization only for injection of the hormone. It is argued that a stress caused by injection could play a role in the appearance of the complex response to adipokinetic hormone. [source]


Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana

PLANT CELL & ENVIRONMENT, Issue 7 2006
VITTORIA DI MARTINO RIGANO
ABSTRACT Temperature responses of nitrate reductase (NR) were studied in the psychrophilic unicellular alga, Koliella antarctica, and in the mesophilic species, Chlorella sorokiniana. Enzymes from both species were purified to near homogeneity by Blue Sepharose (Pharmacia, Uppsala, Sweden) affinity chromatography and high-resolution anion-exchange chromatography (MonoQ; Pharmacia; Uppsala, Sweden). Both enzymes have a subunit molecular mass of 100 kDa, and K. antarctica NR has a native molecular mass of 367 kDa. NR from K. antarctica used both NADPH and NADH, whereas NR from C. sorokiniana used NADH only. Both NRs used reduced methyl viologen (MVH) or benzyl viologen (BVH). In crude extracts, maximal NADH and MVH-dependent activities of cryophilic NR were found at 15 and 35 °C, respectively, and retained 77 and 62% of maximal activity, respectively, at 10 °C. Maximal NADH and MVH-dependent activities of mesophilic NR, however, were found at 25 and 45 °C, respectively, with only 33 and 23% of maximal activities being retained at 10 °C. In presence of 2 µm flavin adenine dinucleotide (FAD), activities of cryophilic NADH:NR and mesophilic NADH:NR were stable up to 25 and 35 °C, respectively. Arrhenius plots constructed with cryophilic and mesophilic MVH:NR rate constants, in both presence or absence of FAD, showed break points at 15 and 25 °C, respectively. Essentially, similar results were obtained for purified enzymes and for activities measured in crude extracts. Factors by which the rate increases by raising temperature 10 °C (Q10) and apparent activation energy (Ea) values for NADH and MVH activities measured in enzyme preparations without added FAD differed slightly from those measured with FAD. Overall thermal features of the NADH and MVH activities of the cryophilic NR, including optimal temperatures, heat inactivation (with/without added FAD) and break-point temperature in Arrhenius plots, are all shifted by about 10 °C towards lower temperatures than those of the mesophilic enzyme. Transfer of electrons from NADH to nitrate occurs via all three redox centres within NR molecule, whereas transfer from MVH requires Mo-pterin prosthetic group only; therefore, our results strongly suggest that structural modification(s) for cold adaptation affect thermodynamic properties of each of the functional domains within NR holoenzyme in equal measure. [source]


Enhanced Glucose to Fructose Conversion in Acetone with Xylose Isomerase Stabilized by Crystallization and Cross-Linking

BIOTECHNOLOGY PROGRESS, Issue 5 2004
Kati M. Vilonen
The effects of acetone and ethanol on glucose to fructose conversion catalyzed by soluble and cross-linked crystalline (CLXIC) xylose isomerase were studied. Relative to pure buffer solvent, the fructose production rate was more than doubled in 50% acetone. The same kind of increase in the isomerization rate was not seen with ethanol. Increase both in acetone and in ethanol concentration in the reaction solvent enhanced the production of fructose. At 50 °C in pure buffer solvent the reaction mixture contained 49% fructose in equilibrium and in 90% acetone the fructose equilibrium content was 64%. Furthermore, CLXIC was relatively stable in the presence of high concentration of acetone: 70,80% of activity was left after incubation for 24 h at 50 °C in buffer solutions (pH 7.2) containing 10,90% acetone. In buffer containing 50% ethanol only 2% of the initial activity of CLXIC was retained after 24 h at 50 °C. Soluble xylose isomerase was considerably less stable than CLXIC in both acetone- and ethanol-containing solutions. These results show that the addition of acetone enhances the production of fructose from glucose by enhancing the reaction rate and shifting the equilibrium toward fructose. However, xylose isomerase must be in the form of cross-linked crystals for maximal activity and stability. [source]


Differences between the abilities of tegaserod and motilin receptor agonists to stimulate gastric motility in vitro

BRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2007
E M Jarvie
Background and purpose: Motilin or 5-HT4 receptor agonists stimulate gastrointestinal motility. Differences in activity are suggested but direct comparisons are few. A method was devised to directly compare the gastric prokinetic activities of motilin, the motilin receptor agonist, erythromycin, and the 5-HT4 receptor agonist, tegaserod. Experimental approach: Gastric prokinetic-like activity was assessed by measuring the ability to facilitate cholinergically-mediated contractions evoked by electrical field stimulation (EFS) in rabbit isolated stomach. Comparisons were made between potency, maximal activity and duration of responses. Key results: Rabbit motilin (r.motilin) 0.003,0.3,M, [Nle13]motilin 0.003,0.3,M, erythromycin 0.3,10,M and tegaserod 0.1,10,M caused concentration , dependent potentiation of EFS-evoked contractions. The potency ranking was r.motilin = [Nle13]motilin > tegaserod > erythromycin. The Emax ranking was r.motilin = [Nle13]motilin = erythromycin > tegaserod. Responses to r.motilin and [Nle13]motilin faded rapidly (t1/2 9 and 11 min, respectively) whereas those to erythromycin and tegaserod were maintained longer (t1/2 24 and 28 min). The difference did not appear to be due to peptide degradation. A second application of [Nle13]motilin was excitatory after 60 min contact and fade of the initial response (responses to 0.03 and 0.1,M [Nle13]motilin were not different from those caused by the first application). Conclusions and implications: Prokinetic-like activities of the 5-HT4 agonist tegaserod and the motilin receptor agonists were compared by measuring changes in cholinergically-mediated contractions. This novel approach highlighted important differences between classes (greater Emax of motilin, compared with tegaserod) and for the first time, within each class (short t1/2 for motilin, compared with erythromycin). British Journal of Pharmacology (2007) 150, 455,462. doi:10.1038/sj.bjp.0707118 [source]


A low-molecular mass ribonuclease from the brown oyster mushroom

CHEMICAL BIOLOGY & DRUG DESIGN, Issue 1 2005
L. Xia
Abstract:, A ribonuclease, with a molecular mass of 9 kDa and an N-terminal sequence resembling the sequence of a fragment of tRNA/rRNA cytosine-C5-methylase and a fragment of a alanyl-tRNA synthetase, was isolated from fresh fruiting bodies of the brown oyster mushroom Pleurotus ostreatus. The ribonuclease was purified using a very simple protocol that comprised ion-exchange chromatography on carboxymethyl (CM)-cellulose and affinity chromatography on Affi-gel blue gel. Subsequent gel filtration by fast protein liquid chromatography on Superdex 75 and sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis revealed that the ribonuclease was purified after the first two chromatographic steps. The ribonuclease was adsorbed on CM-cellulose and Affi-gel blue gel. The ribonuclease exhibited the highest activity toward poly A, lower activity toward poly C, slight activity toward poly G, and indiscernible activity toward poly U. The enzyme was stimulated upon exposure to 1 ,m Mg2+ and 10 ,m Zn2+, but was inhibited by the following ions at 10 mm: Ca2+, Mg2+, Zn2+, Cu2+, Fe2+, Mn2+, and Fe3+. The ribonuclease required a pH of 8.0 and a temperature of 50,70 °C to express maximal activity. It had a Km of 60 ,m toward yeast tRNA. It lacked mitogenic and HIV-1 reverse transcriptase inhibiting activities, but exerted antiproliferative activity toward leukemia L1210 cells. [source]


[4-(2H -1,2,3-Benzotriazol-2-yl)phenoxy]alkanoic Acids as Agonists of Peroxisome Proliferator-Activated Receptors (PPARs)

CHEMISTRY & BIODIVERSITY, Issue 4 2006
Anna Sparatore
Abstract A series of [4-(2H -1,2,3-benzotriazol-2-yl)phenoxy]alkanoic acids has been synthesized and tested as agonists of Peroxisome Proliferator-Activated Receptor (PPAR) ,, ,, and ,. Three compounds displayed 56 to 96% of maximal activity of the reference drug Wy-14643 on PPAR,, and two of these, i.e., 1 and 5, exhibited also moderate activity on either PPAR, or , with efficacy equal to 50% and 46% of that of rosiglitazone and GW 501516, respectively. Thus, compounds 1 and 5 represent interesting starting point for preparing novel agents for the treatment of dyslipidemia or of dyslipidemic type-2 diabetes. [source]