Mammary Gland Development (mammary + gland_development)

Distribution by Scientific Domains


Selected Abstracts


Role for primary cilia in the regulation of mouse ovarian function

DEVELOPMENTAL DYNAMICS, Issue 8 2008
Ellen T. Johnson
Abstract Ift88 is a component of the intraflagellar transport complex required for formation and maintenance of cilia. Disruption of Ift88 results in depletion of cilia. The goal of the current study was to determine the role of primary cilia in ovarian function. Deletion of Ift88 in ovary using Cre-Lox recombination in mice resulted in a severe delay in mammary gland development including lack of terminal end bud structures, alterations in the estrous cycle, and impaired ovulation. Because estrogen drives the formation of end buds and Cre was expressed in the granulosa cells of the ovary, we tested the hypothesis that addition of estradiol to the mutant mice would compensate for defects in ovarian function and rescue the mammary gland phenotype. Mammary gland development including the formation of end bud structures resumed in mutant mice that were injected with estradiol. Together the results suggest that cilia are required for ovarian function. Developmental Dynamics 237:2053,2060, 2008. © 2008 Wiley-Liss, Inc. [source]


Impaired lactation in mice expressing dominant-negative FADD in mammary epithelium

DEVELOPMENTAL DYNAMICS, Issue 4 2009
Mark Shackleton
Abstract The Fas-associated death domain (FADD/Mort1) adaptor protein was originally identified as a key mediator of apoptosis, although pleiotropic functions for FADD have also been reported. FADD-mediated tumoricidal effects have been described in breast cancer cells; however, its physiological role in normal mammary gland epithelium is not well understood. To determine the role of FADD signaling during mammary gland development, we generated transgenic mice overexpressing dominant-negative FADD (DN-FADD) in mammary epithelium, using the steroid responsive mouse mammary tumor virus promoter. Transgenic mice exhibited a perturbation in lactation resulting in impaired milk production and pup growth retardation. Reduced expansion of alveoli was evident during early lactation with extensive shedding of luminal alveolar cells. Significantly more TUNEL (terminal deoxynucleotidyl transferase,mediated deoxyuridinetriphosphate nick end-labeling)-positive cells were present at this time point and a subsequent increase in bromodeoxyuridine-positive cells was observed. These findings suggest a role for FADD in maintaining the survival of mammary secretory alveolar cells after the establishment of lactation. Developmental Dynamics 238:1010,1016, 2009. © 2009 Wiley-Liss, Inc. [source]


Role for primary cilia in the regulation of mouse ovarian function

DEVELOPMENTAL DYNAMICS, Issue 8 2008
Ellen T. Johnson
Abstract Ift88 is a component of the intraflagellar transport complex required for formation and maintenance of cilia. Disruption of Ift88 results in depletion of cilia. The goal of the current study was to determine the role of primary cilia in ovarian function. Deletion of Ift88 in ovary using Cre-Lox recombination in mice resulted in a severe delay in mammary gland development including lack of terminal end bud structures, alterations in the estrous cycle, and impaired ovulation. Because estrogen drives the formation of end buds and Cre was expressed in the granulosa cells of the ovary, we tested the hypothesis that addition of estradiol to the mutant mice would compensate for defects in ovarian function and rescue the mammary gland phenotype. Mammary gland development including the formation of end bud structures resumed in mutant mice that were injected with estradiol. Together the results suggest that cilia are required for ovarian function. Developmental Dynamics 237:2053,2060, 2008. © 2008 Wiley-Liss, Inc. [source]


Circadian clock and cell cycle gene expression in mouse mammary epithelial cells and in the developing mouse mammary gland

DEVELOPMENTAL DYNAMICS, Issue 1 2006
Richard P. Metz
Abstract Mouse mammary epithelial cells (HC-11) and mammary tissues were analyzed for developmental changes in circadian clock, cellular proliferation, and differentiation marker genes. Expression of the clock genes Per1 and Bmal1 were elevated in differentiated HC-11 cells, whereas Per2 mRNA levels were higher in undifferentiated cells. This differentiation-dependent profile of clock gene expression was consistent with that observed in mouse mammary glands, as Per1 and Bmal1 mRNA levels were elevated in late pregnant and lactating mammary tissues, whereas Per2 expression was higher in proliferating virgin and early pregnant glands. In both HC-11 cells and mammary glands, elevated Per2 expression was positively correlated with c-Myc and Cyclin D1 mRNA levels, whereas Per1 and Bmal1 expression changed in conjunction with ,- casein mRNA levels. Interestingly, developmental stage had differential effects on rhythms of clock gene expression in the mammary gland. These data suggest that circadian clock genes may play a role in mouse mammary gland development and differentiation. Developmental Dynamics 235:263,271, 2006. © 2005 Wiley-Liss, Inc. [source]


Retinoic acid signaling is required for proper morphogenesis of mammary gland

DEVELOPMENTAL DYNAMICS, Issue 4 2005
Y. Alan Wang
Abstract Retinoic acid (RA), a bioactive chemical compound synthesized from dietary derived vitamin A, has been successfully used as a chemopreventive and chemotherapeutic agent through the regulation of cell proliferation, differentiation, and apoptosis acting via the retinoic acid receptors. Despite two decades of research on the function of retinoic acid, the physiological role of RA in mammary gland development is still not well characterized. In this report, we demonstrate that RA is required for proper morphogenesis of mouse mammary gland in a novel transgenic mouse model system. It was found that inhibition of RA signaling in vivo leads to excessive mammary ductal morphogenesis through upregulation of cyclin D1 and MMP-3 expression. Furthermore, we show that the transgene-induced excessive branching morphogenesis could be reversed by treatment with RA, demonstrating the direct physiological effect of RA signaling in vivo. In addition, we demonstrate that excessive branching morphogenesis in the transgenic mammary gland are cell-autonomous and do not require stromal signals within the transgenic mammary gland. Finally, we provide evidence suggesting that retinoic acid signaling is required for appropriate mammary gland differentiation. Collectively, our data indicate for the first time that retinoic acid signaling is required to maintain the homeostasis of mammary gland morphogenesis. Developmental Dynamics 234:892,899, 2005. © 2005 Wiley-Liss, Inc. [source]


PPFIA1 and CCND1 are frequently coamplified in breast cancer

GENES, CHROMOSOMES AND CANCER, Issue 1 2010
Ana-Maria Dancau
Recently, amplification of PPFIA1, encoding a member of the liprin family located about 600 kb telomeric to CCND1 on chromosome band 11q13, was described in squamous cell carcinoma of head and neck. Because 11q13 amplification is frequent in breast cancer, and PPFIA1 has been suggested to contribute to mammary gland development, we hypothesized that PPFIA1 might also be involved in the 11q13 amplicon in breast cancer and contribute to breast cancer development. A tissue microarray containing more than 2000 human breast cancers was analyzed for gene copy numbers of PPFIA1 and CCND1 by means of fluorescence in situ hybridization. PPFIA1 amplification was found in 248/1583 (15.4%) of breast cancers. Coamplification with CCND1 was found in all (248/248, 100%) PPFIA1 -amplified cancers. CCND1 amplification without PPFIA1 coamplification was found in additional 117 (4.7%) tumors. Amplification of both PPFIA1 and CCND1 were significantly associated with high-grade phenotype (P = 0.0002) but were unrelated to tumor stage (P = 0.7066) or nodal stage (P = 0.5807). No difference in patient prognosis was found between 248 CCND1/PPFIA1 coamplified tumors and 117 tumors with CCND1 amplification alone (P = 0.6419). These data show that PPFIA1 amplification occurs frequently in breast cancer. The higher incidence of CCND1 amplification when compared with PPFIA1, the lack of prognostic relevance of coamplifications, and the fact that PPFIA1 amplification was found exclusively in CCND1 -amplified cancers suggest that PPFIA1 gene copy number changes represent concurrent events of CCND1 amplification rather than specific biological incidents. © 2009 Wiley-Liss, Inc. [source]


Interactions between FGF and Wnt signals and Tbx3 gene expression in mammary gland initiation in mouse embryos

JOURNAL OF ANATOMY, Issue 1 2004
Maxwell C. Eblaghie
Abstract Interactions between Wnts, Fgfs and Tbx genes are involved in limb initiation and the same gene families have been implicated in mammary gland development. Here we explore how these genes act together in mammary gland initiation. We compared expression of Tbx3, the gene associated with the human condition ulnar,mammary syndrome, expression of the gene encoding the dual-specificity MAPK phosphatase Pyst1/MKP3, which is an early response to FGFR1 signalling (as judged by sensitivity to the SU5402 inhibitor), and expression of Lef1, encoding a transcription factor mediating Wnt signalling and the earliest gene so far known to be expressed in mammary gland development. We found that Tbx3 is expressed earlier than Lef1 and that Pyst1 is also expressed early but only transiently. Patterns of expression of Tbx3, Pyst1 and Lef1 in different glands suggest that the order of mammary gland initiation is 3, 4, 1, 2 and 5. Consistent with expression of Pyst1 in the mammary gland, we detected expression of Fgfr1b, Fgf8 and Fgf9 in both surface ectoderm and mammary bud epithelium, and Fgf4 and Fgf17 in mammary bud epithelium. Beads soaked in FGF-8 applied to the flank of mouse embryos, at a stage just prior to mammary bud initiation, induce expression of Pyst1 and Lef1 and maintain Tbx3 expression in flank tissue surrounding the bead. Grafting beads soaked in the FGFR1 inhibitor, SU5402, abolishes Tbx3, Pyst1 and Lef1 expression, supporting the idea that FGFR1 signalling is required for early mammary gland initiation. We also showed that blocking Wnt signalling abolishes Tbx3 expression but not Pyst1 expression. These data, taken together with previous findings, suggest a model in which Tbx3 expression is induced and maintained in early gland initiation by both Wnt and Fgf signalling through FGFR1. [source]


TGF-, inhibits prolactin-induced expression of ,-casein by a Smad3-dependent mechanism,

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2008
Wen-Jun Wu
Abstract Transforming growth factor-, (TGF-,) is a multifunctional growth factor, affecting cell proliferation, apoptosis, and extracellular matrix homeostasis. It also plays critical roles in mammary gland development, one of which involves inhibition of the expression of milk proteins, such as ,-casein, during pregnancy. Here we further explore the underlying signaling mechanism for it. Our results show that TGF-, suppresses prolactin-induced expression of ,-casein mRNA and protein in primary mouse mammary epithelial cells, but its effect on protein expression is more evident. We also find out that this inhibition is not due to the effect of TGF-, on cell apoptosis. Furthermore, inhibition of TGF-, type I receptor kinase activity by a pharmacological inhibitor SB431542 or overexpression of dominant negative Smad3 substantially restores ,-casein expression. By contrast, inhibition of p38 and Erk that are known to be activated by TGF-, does not alleviate the inhibitory effect of TGF-,. These results are consistent with our other observation that Smad but not MAPK pathway is activated by TGF-, in mammary epithelial cells. Lastly, we show that prolactin-induced tyrosine phosphorylation of Jak2 and Stat5 as well as serine/threonine phosphorylation of p70S6K and S6 ribosomal protein are downregulated by TGF-,, although the former event requires considerably long exposure to TGF-,. We speculate that these events might be involved in repressing transcription and translation of ,-casein gene, respectively. Taken together, our results demonstrate that TGF-, abrogates prolactin-stimulated ,-casein gene expression in mammary epithelial cells through, at least in part, a Smad3-dependent mechanism. J. Cell. Biochem. 104: 1647,1659, 2008. © 2008 Wiley-Liss, Inc. [source]


Database of cattle candidate genes and genetic markers for milk production and mastitis

ANIMAL GENETICS, Issue 6 2009
J. Ogorevc
Summary A cattle database of candidate genes and genetic markers for milk production and mastitis has been developed to provide an integrated research tool incorporating different types of information supporting a genomic approach to study lactation, udder development and health. The database contains 943 genes and genetic markers involved in mammary gland development and function, representing candidates for further functional studies. The candidate loci were drawn on a genetic map to reveal positional overlaps. For identification of candidate loci, data from seven different research approaches were exploited: (i) gene knockouts or transgenes in mice that result in specific phenotypes associated with mammary gland (143 loci); (ii) cattle QTL for milk production (344) and mastitis related traits (71); (iii) loci with sequence variations that show specific allele-phenotype interactions associated with milk production (24) or mastitis (10) in cattle; (iv) genes with expression profiles associated with milk production (207) or mastitis (107) in cattle or mouse; (v) cattle milk protein genes that exist in different genetic variants (9); (vi) miRNAs expressed in bovine mammary gland (32) and (vii) epigenetically regulated cattle genes associated with mammary gland function (1). Fourty-four genes found by multiple independent analyses were suggested as the most promising candidates and were further in silico analysed for expression levels in lactating mammary gland, genetic variability and top biological functions in functional networks. A miRNA target search for mammary gland expressed miRNAs identified 359 putative binding sites in 3,UTRs of candidate genes. [source]


Application of new homologous in vitro bioassays for human lactogens to assess the actual bioactivity of human prolactin isoforms in hyperprolactinaemic patients

CLINICAL ENDOCRINOLOGY, Issue 2 2006
Alfredo Leaños-Miranda
Summary Background, ,Prolactin (PRL) plays a central role in mammary gland development and lactation. Due to its molecular heterogeneity, measurement of PRL immunoreactivity does not necessarily reflect its intrinsic bioactivity. For many years the Nb2 rat lymphoma cell bioassay has been the only reference bioassay for human lactogens. This bioassay, however, does not always correlate with the clinical features found in some patients exhibiting normal or elevated immunoreactive serum PRL concentrations. Objectives, ,(1) To determine the concentrations of bioactive PRL in serum samples from individuals with normoprolactinaemia or with different forms of hyperprolactinaemia using two recently described homologous in vitro bioassays (i.e. a transcriptional bioassay in HEK-293 cells and a proliferation assay in Ba/F3 cells); and (2) to compare these results with those generated by the classical Nb2 cell bioassay. Design, ,Cross-sectional study. Setting, ,An institutional biomedical research laboratory. Participants, ,Ten patients with symptomatic hyperprolactinaemia due to prolactinoma, 11 patients with asymptomatic hyperprolactinaemia and macroprolactinaemia, and nine normal women. Main outcome measures, ,Measurement of immunoreactive and bioactive concentrations of serum PRL. Results, ,Samples from normal women and patients with tumoral hyperprolactinaemia due to prolactinoma exhibited similar within-group concentration values of bioactive and immunoreactive serum PRL when tested by the three bioassays and the immunoradiometric assay employed. By contrast, measurement of bioactive PRL in samples from patients with macroprolactinaemia revealed that macroprolactin was poorly active in the homologous receptor bioassays, while it was more active in the Nb2 bioassay. Conclusions, ,The reduced bioactivity of PRL in patients with macroprolactinaemia may further explain the absence of clinical features of hyperprolactinaemia in these individuals. In addition, our findings indicate that species-specificity and sensitivity of the bioassays are determinant factors in the measurement of the intrinsic biological activity of circulating PRL. [source]