MALDI-TOF-MS

Distribution by Scientific Domains


Selected Abstracts


Parasitoid wasp sting: A cocktail of GABA, taurine, and ,-alanine opens chloride channels for central synaptic block and transient paralysis of a cockroach host

DEVELOPMENTAL NEUROBIOLOGY, Issue 8 2006
Eugene L. Moore
Abstract The wasp Ampulex compressa injects venom directly into the prothoracic ganglion of its cockroach host to induce a transient paralysis of the front legs. To identify the biochemical basis for this paralysis, we separated venom components according to molecular size and tested fractions for inhibition of synaptic transmission at the cockroach cercal-giant synapse. Only fractions in the low molecular weight range (<2 kDa) caused synaptic block. Dabsylation of venom components and analysis by HPLC and MALDI-TOF-MS revealed high levels of GABA (25 mM), and its receptor agonists ,-alanine (18 mM), and taurine (9 mM) in the active fractions. Each component produces transient block of synaptic transmission at the cercal-giant synapse and block of efferent motor output from the prothoracic ganglion, which mimics effects produced by injection of whole venom. Whole venom evokes picrotoxin-sensitive chloride currents in cockroach central neurons, consistent with a GABAergic action. Together these data demonstrate that Ampulex utilizes GABAergic chloride channel activation as a strategy for central synaptic block to induce transient and focal leg paralysis in its host. © 2006 Wiley Periodicals, Inc. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source]


Facilitating the hyphenation of CIEF and MALDI-MS for two-dimensional separation of proteins

ELECTROPHORESIS, Issue 15 2010
Chang Cheng
Abstract Both CIEF and MALDI-MS are frequently used in protein analysis, but hyphenation of the two has not been investigated proportionally. One of the major reasons is that the additives (such as carrier ampholytes and detergent) in CIEF severely suppress the MALDI-MS signal, which hampers the hyphenation of the two. In this paper, we develop a simple means to alleviate the above signal-suppressing effect. We first deposit 1,,L of water onto a MALDI-MS target, deliver a fraction of CIEF-separated protein (,0.1,,L) to the water droplet, evaporate the solvent, add 0.5,,L of MALDI matrix to the sample spot, dry the matrix and move the target plate to a MALDI-TOF-MS for mass spectrum measurement. We optimize the droplet volume and the laser-ablation region. Under the optimized conditions, we improve the S/N by two- to tenfold. We also apply this method for 2-D separations of standard proteins and apolipoprotein A,I, a membrane protein expressed in Escherichia coli cells. [source]


Nuclear proteome analysis of undifferentiated mouse embryonic stem and germ cells

ELECTROPHORESIS, Issue 11 2008
Nicolas Buhr
Abstract Embryonic stem cells (ESCs) and embryonic germ cells (EGCs) provide exciting models for understanding the underlying mechanisms that make a cell pluripotent. Indeed, such understanding would enable dedifferentiation and reprogrammation of any cell type from a patient needing a cell therapy treatment. Proteome analysis has emerged as an important technology for deciphering these biological processes and thereby ESC and EGC proteomes are increasingly studied. Nevertheless, their nuclear proteomes have only been poorly investigated up to now. In order to investigate signaling pathways potentially involved in pluripotency, proteomic analyses have been performed on mouse ESC and EGC nuclear proteins. Nuclei from ESCs and EGCs at undifferentiated stage were purified by subcellular fractionation. After 2-D separation, a subtractive strategy (subtracting culture environment contaminating spots) was applied and a comparison of ESC, (8.5 day post coïtum (dpc))-EGC and (11.5,dpc)-EGC specific nuclear proteomes was performed. A total of 33 ESC, 53 (8.5,dpc)-EGC, and 36 (11.5,dpc)-EGC spots were identified by MALDI-TOF-MS and/or nano-LC-MS/MS. This approach led to the identification of two isoforms (with and without N -terminal acetylation) of a known pluripotency marker, namely developmental pluripotency associated 5 (DPPA5), which has never been identified before in 2-D gel-MS studies of ESCs and EGCs. Furthermore, we demonstrated the efficiency of our subtracting strategy, in association with a nuclear subfractionation by the identification of a new protein (protein arginine N -methyltransferase 7; PRMT7) behaving as proteins involved in pluripotency. [source]


Synaptic vesicle proteins under conditions of rest and activation: Analysis by 2-D difference gel electrophoresis

ELECTROPHORESIS, Issue 17 2006
Jacqueline Burré
Abstract Synaptic vesicles are organelles of the nerve terminal that secrete neurotransmitters by fusion with the presynaptic plasma membrane. Vesicle fusion is tightly controlled by depolarization of the plasma membrane and a set of proteins that may undergo post-translational modifications such as phosphorylation. In order to identify proteins that undergo modifications as a result of synaptic activation, we induced massive exocytosis and analysed the synaptic vesicle compartment by benzyldimethyl- n -hexadecylammonium chloride (BAC)/SDS-PAGE and difference gel electrophoresis (DIGE) followed by MALDI-TOF-MS. We identified eight proteins that revealed significant changes in abundance following nerve terminal depolarization. Of these, six were increased and two were decreased in abundance. Three of these proteins were phosphorylated as detected by Western blot analysis. In addition, we identified an unknown synaptic vesicle protein whose abundance increased on synaptic activation. Our results demonstrate that depolarization of the presynaptic compartment induces changes in the abundance of synaptic vesicle proteins and post-translational protein modification. [source]


Age-dependent variations of cell response to oxidative stress: Proteomic approach to protein expression and phosphorylation

ELECTROPHORESIS, Issue 14 2005
Yuri Miura Dr.
Abstract We investigated the protein profiles of variously aged rat astrocytes in response to oxidative stress. After H2O2 -exposure of cells at 100,µM for 30,min, the relative intensity of ten protein spots changed on two-dimensional (2-D) gels compared with control gels after silver staining. Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) analysis after in-gel digestion revealed that six of these spots corresponded to three kinds of proteins, each of which was composed of a protein and its modified form with a different isoelectric point (pI). These three proteins were identified as peroxiredoxins (PRDXs) II and III, and calpactin I light chain (p11). H2O2 -exposure increased the intensity of the spot with lower pI and simultaneously decreased that of the spot with higher pI for both PRDXs II and III. In addition, the expression of annexin VII, S -adenosyl- L -homocysteine hydrolase, elongation factor II fragment (EF-II), and adenosine deaminase was increased by H2O2 -exposure in astrocytes from variously aged rats. Using the Pro-Q® Diamond staining, heat shock protein 60,kDa (Hsp 60) and ,-tubulin were observed to be phosphorylated upon H2O2 -exposure. While phosphorylation of ,-tubulin was correlated positively with age, the changes in abundance of ten protein spots as described above were independent of age. These results suggest that aging does not suppress the responses aimed at limiting injury and promoting repair brought about by severe oxidative stress, and might affect cell dynamics including the formation of microtubules. [source]


High-efficiency protein extraction from polyacrylamide gels for molecular mass measurement by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry

ELECTROPHORESIS, Issue 6 2005
Ya Jin
Abstract A simple and fast method of protein extraction from Coomassie Brilliant Blue (CBB)-stained polyacrylamide gels suited for molecular mass measurement of proteins by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) is reported. Proteins in CBB-stained gel pieces were extracted by a 10-min soaking in 0.1,M NaOH at 25°C. The recovery of this one-step extraction method was 34,73% for proteins <67,kDa. CBB adduction to proteins during mass spectrometric analysis was avoided by a destaining step before the alkaline extraction. The molecular mass values of the extracted proteins coincided with those of purified proteins within ±0.01,0.10% deviation for all the proteins <36,kDa. Because of the high extraction recovery, mass measurement was possible for the proteins extracted from CBB-stained gels with loaded protein quantities as little as 34,ng for cytochrome,c, ,-lactalbumin, myoglobin, ,-lactoglobulin, trypsinogen, and carbonic anhydrase (12.4,29.0,kDa), 340,ng for glyceraldehyde-3-phosphate dehydrogenase (35.6,kDa) and albumin (66.3,kDa). This method provides a highly efficient approach to utilize CBB-stained one- or two-dimensional gels for whole protein analysis using MALDI-TOF-MS. [source]


Characterization of volatile compounds and triacylglycerol profiles of nut oils using SPME-GC-MS and MALDI-TOF-MS

EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 2 2009
Stefanie Bail
Abstract Several nut oil varieties mainly used as culinary and overall healthy food ingredients were subject of the present study. Headspace solid-phase microextraction combined with gas chromatography-mass spectrometry was employed in order to determine the qualitative composition of volatile compounds. Furthermore, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used in order to assess the profiles and relative composition of the prevalent triacylglycerols (TAG) within the oils. The headspace of the majority of oil samples was dominated by high contents of acetic acid (up to 42%) and hexanal (up to 32%). As nut oils are typically gained by cold-pressing from previously roasted nuts, characteristic pyrazine derivatives as well as degradation products of long-chain fatty acids were detected. TAG analysis of these oils revealed a quite homogeneous composition dominated by components of the C52 and C54 group composed mainly of oleic (18:1), linoleic (18:2), stearic (18:0) and palmitic (16:0) acid residues representing together between 65 and 95% of the investigated nut oils. The TAG profiles showed characteristic patterns which can be used as ,fingerprints' of the genuine oils. Nut oils exhibiting quite similar fatty acid composition (e.g. hazelnut, pistachio and beech oil) could be clearly discriminated based on TAG showing significant differences between the oils. [source]


Expression of psoriasis-associated fatty acid-binding protein in senescent human dermal microvascular endothelial cells

EXPERIMENTAL DERMATOLOGY, Issue 9 2004
Moon Kyung Ha
Abstract:, Aging is associated with the progressive pathophysiologic modification of endothelial cells. In vitro endothelial cell senescence is accompanied by proliferative activity failure and by perturbations in gene and protein expressions. Moreover, this cellular senescence in culture has been proposed to reflect processes that occur in aging organisms. In order to observe the changing patterns of protein expression in senescent human dermal microvascular endothelial cells (HDMECs), proteins obtained from both early- and late-passaged HDMECs were separated by two-dimensional electrophoresis, visualized by silver staining, and quantified by image processing. Proteins of interest were extracted by in-gel digestion with trypsin and quantified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), by searching the National Center for Biotechnology Information protein-sequence database. More than 2000 spots were detected by 2D electrophoresis within a linear pH range of 3,10. Twenty-two major differentially expressed spots were observed in serially passaged HDMECs and identified with high confidence by MALDI-TOF-MS. One of these spots was found to be a 14,15 kDa psoriasis-associated fatty acid-binding protein (PA-FABP) with high affinity for long-chain fatty acids. The expression of PA-FABP was confirmed to be elevated in senescent HDMECs (passage 20) by fluorescence-activated cell sorting (FACS), confocal laser microscopy, and by immunohistochemistry in aged human skin tissue. Our results suggest that the overexpression of FABP in cultured senescent HDMECs is closely related to skin aging. [source]


Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry

FEBS JOURNAL, Issue 2 2000
Søren Persson
We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1 µL) of a concentrated suspension of isolated chlorosomes directly to the target of the mass spectrometer we have been able to detect bacteriochlorophyll a and all the major homologs of bacteriochlorophyll c. The peak heights of the different bacteriochlorophyll c homologs in the MALDI spectra were proportional to peak areas obtained from HPLC analysis of the same sample. The same result was also obtained when whole cells of Chl. tepidum were applied to the target, indicating that MALDI-MS can provide a rapid method for obtaining a semiquantitative determination or finger-print of the bacteriochlorophyll homologs in a small amount of green bacterial cells. In addition to information on pigments, the MALDI spectra also contained peaks from chlorosome proteins. Thus we have been able with high precision to confirm the molecular masses of the chlorosome proteins CsmA and CsmE which have been previously determined by conventional biochemical and genetic methods, and demonstrate the presence of truncated versions of CsmA and CsmB. [source]


A proteomic study of Escherichia coli O157:H7 NCTC 12900 cultivated in biofilm or in planktonic growth mode

FEMS MICROBIOLOGY LETTERS, Issue 1 2002
Frédéric Trémoulet
Abstract Escherichia coli 0157:H7 biofilms were studied by a new method of cultivation in order to identify some of the proteins involved in the biofilm phenotype. A proteomic analysis of sessile or planktonic bacteria of the same age was carried out by two-dimensional electrophoresis, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) and database searching. Comparison of two-dimensional gels showed clear differences between protein patterns of sessile and planktonic cells. Fourteen proteins increased in biofilms, whereas three decreased. From these 17 proteins, 10 were identified by MALDI-TOF-MS and could be classified into four categories according to their function: (1) general metabolism proteins (malate dehydrogenase, thiamine-phosphate pyrophosphorylase), (2) sugar and amino acid transporters (d -ribose-binding periplasmic protein, d -galactose-binding protein, YBEJ), (3) regulator proteins (DNA starvation protein and H-NS) and (4) three proteins with unknown function. The results of this study showed that E. coli O157:H7 modified the expression of several proteins involved in biofilm growth mode. [source]


A Facile Synthesis Approach to C8 -Functionalized Magnetic Carbonaceous Polysaccharide Microspheres for the Highly Efficient and Rapid Enrichment of Peptides and Direct MALDI-TOF-MS Analysis

ADVANCED MATERIALS, Issue 21 2009
Hemei Chen
Biocompatible C8 -functionalized magnetic carbonaceous polysaccharide microspheres are synthesized via a facile, low-cost, and large-scale route, and their use for the enrichment of peptides from protein digest mixtures is presented. The process of enrichment is very simple, quick, and efficient. Peptides loaded onto the C8 -functionalized magnetic carbonaceous polysaccharide microspheres can be directly analyzed by MALDI-TOF-MS without prior elution from the microspheres. [source]


Enzyme-Catalyzed Synthesis of a Hybrid N-Linked Oligosaccharide using N-Acetylglucosaminyltransferase I

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 11-12 2008
Rui Chen
Abstract The soluble catalytic domain of human N-acetylglucosaminyltransferase I was purified from Escherichia coli and utilized in the enzyme-catalyzed conversion of high mannose N-linked oligosaccharide 1 into the rare hybrid oligosaccharide 2. Analysis of the reaction showed that the conversion of high mannose 1 into hybrid oligosaccharide 2 proceeded to 100% completion as assessed by MALDI-TOF-MS. Purification of the large polar oligosaccharide by gel filtration and silica gel chromatography afforded a 42% isolated yield of oligosaccharide 2. This enzyme-catalyzed reaction can be utilized to produce rare hybrid oligosaccharides for biochemical and structural studies. [source]


Preparation and properties of organic,inorganic hybrid composites based on polystyrene and an incompletely condensed polyvinylsilsesquioxane oligomer

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010
Zhen Dai
Abstract An incompletely condensed polyvinylsilsesquioxane (PVSQ) oligomer containing abundant silanol groups was synthesized and characterized by FTIR, 1H-NMR, 29Si-NMR, and MALDI-TOF-MS. Polystyrene/polyvinylsilsesquioxane (PS/PVSQ) hybrid composites were prepared by an in situ bulk polymerization. The hybrid composites showed higher Tg, Td, and char yield than PS homopolymer and without mechanical loss. The improvements in the properties of PS/PVSQ hybrid composites can be ascribed to the crosslinking function of PVSQ by silanol condensation in later processing. The hybrids showed different morphology from discrete microstructure to continuous network depending on the concentration of PVSQ. Because of the surface enrichment, a PVSQ protection layer was formed, which made the hybrid surface more hydrophobic. The structure and the reaction mechanism of PS/PVSQ hybrid composites were also investigated. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Proteomics analysis of liver samples from puffer fish Takifugu rubripes exposed to excessive fluoride: An insight into molecular response to fluorosis

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 1 2010
Jian Lu
Abstract Comparative proteomics was performed to identify proteins in the liver of Takifugu rubripes in response to excessive fluoride exposure. Sixteen fish were randomly divided into a control group and an experimental group. The control group was raised in soft water alone (F, = 0.4 mg/L), and the experimental group was raised in the same water with sodium fluoride at a high concentration of 35 mg/L. After 3 days, proteins were extracted from the fish livers and then subjected to two-dimensional polyacrylamide gel electrophoresis analysis. The matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was applied to identify the proteins that were differentially expressed from the two groups of fish. Among an average of 816 and 918 proteins detected in the control and treated groups, respectively, 16 proteins were upregulated and 35 were downregulated (P < 0.01) in the fluoride-treated group as compared with those in the control group. Twenty-four highly differentially expressed proteins were further analyzed by MALDI-TOF/TOF-MS, and eight were identified by Mascot. These eight proteins include disulfide isomerase ER-60, 4SNc-Tudor domain protein, SMC3 protein, Cyclin D1, and mitogen-activated protein kinase 10, as well as three unknown proteins. Consistent with their previously known functions, these identified proteins seem to be involved in apoptosis and other functions associated with fluorosis. These results will greatly contribute to our understanding of the effects of fluoride exposure on the physiological and biochemical functions of Takifugu and the toxicological mechanism of fluoride causing fluorosis in both fish and human. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:21,28, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20308 [source]


Proteomic Alterations of Antarctic Ice Microalga Chlamydomonas sp.

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 8 2006
Under Low-Temperature Stress
Abstract Antarctic ice microalga can survive and thrive in cold channels or pores in the Antarctic ice layer. In order to understand the adaptive mechanisms to low temperature, in the present study we compared two-dimensional polyacrylamide gel electrophoresis (2-DE) profiles of normal and low temperature-stressed Antarctic ice microalga Chlamydomonas sp. cells. In addition, new protein spots induced by low temperature were identified with peptide mass fingerprinting based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and database searching. Well-resolved and reproducible 2-DE patterns of both normal and low temperature-stressed cells were acquired. A total of 626 spots was detected in control cells and 652 spots were detected in the corresponding low temperature-stressed cells. A total of 598 spots was matched between normal and stressed cells. Two newly synthesized proteins (a and b) in low temperature-stressed cells were characterized. Protein spot A (53 kDa, pI 6.0) was similar to isopropylmalate/homocitrate/citramalate synthases, which act in the transport and metabolism of amino acids. Protein spot b (25 kDa, pI 8.0) was related to glutathione S -transferase, which functions as a scavenger of active oxygen, free radicals, and noxious metabolites. The present study is valuable for the application of ice microalgae, establishing an ice microalga Chlamydomonas sp. proteome database, and screening molecular biomarkers for further studies. (Managing editor: Li-Hui Zhao) [source]


Integrin ,3,1 interacts with I1PP2A/lanp and phosphatase PP1

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2006
Diana Mutz
Abstract Integrin ,3,1 is a receptor for the extracellular matrix component laminin 5. To elucidate possible signaling pathways induced by integrin ,3,1, we looked for proteins that interact with the cytoplasmic part of the ,3A integrin subunit. We identified several multifunctional proteins by affinity chromatography and subsequent MALDI-TOF-MS and focused on the inhibitor 1 of serine/threonine phosphatase PP2A (I1PP2A, synonym: lanp) which also plays a role during the development of the mouse cerebellum. I1PP2A/lanp colocalizes with the ,3A integrin subunit in differentiated PC12 cells in the cell body and in neurites as well as in Purkinje cells of mouse cerebellum. Overexpression of GFP-I1PP2A/lanp in PC12 cells leads to markedly reduced neurite length on laminin 5 after induction with nerve growth factor. By affinity chromatography the protein phosphatase PP1 can also be identified as a ,3A/cyto-binding protein. PP1 and integrin ,3,1 can be pulled down by GST-I1PP2A/lanp from cell lysates of differentiated and undifferentiated PC12 cells. The phosphatase binds to the cytoplasmic membrane-proximal conserved GFFKR motif of the , integrin subunit, whereas I1PP2A/lanp requires a longer sequence for binding. PP1 but not PP2A is able to dephosphorylate precipitated integrin ,3,1 in vitro. Furthermore, PP1 releases phosphate from T1046 of phosphopeptides that mimic the phosphorylation consensus sequence in the cytoplasmic part of the ,3A integrin subunit. These data suggest that I1PP2A/lanp forms a complex with PP1 and the ,3A integrin subunit and might possibly regulate the phosphorylation status of integrin ,3,1 and/or integrin downstream targets. © 2006 Wiley-Liss, Inc. [source]


Determination of block size in poly(ethylene oxide)- b -polystyrene block copolymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 13 2009
Marion Girod
Abstract Characterization of block size in poly(ethylene oxide)- b -poly(styrene) (PEO- b -PS) block copolymers could be achieved by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) after scission of the macromolecules into their constituent blocks. The performed hydrolytic cleavage was demonstrated to specifically occur on the targeted ester function in the junction group, yielding two homopolymers consisting of the constitutive initial blocks. This approach allows the use of well-established MALDI protocols for a complete copolymer characterization while circumventing difficulties inherent to amphiphilic macromolecule ionization. Although the labile end-group in PS homopolymer was modified by the MALDI process, PS block size could be determined from MS data since polymer chains were shown to remain intact during ionization. This methodology has been validated for a PEO- b -PS sample series, with two PEO of number average molecular weight (Mn) of 2000 and 5000 g mol,1 and Mn(PS) ranging from 4000 to 21,000 g mol,1. Weight average molecular weight (Mw), and thus polydispersity index, could also be reached for each segment and were consistent with values obtained by size exclusion chromatography. This approach is particularly valuable in the case of amphiphilic copolymers for which Mn values as determined by liquid state nuclear magnetic resonance might be affected by micelle formation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3380,3390, 2009 [source]


A snake venom metalloproteinase, kistomin, cleaves platelet glycoprotein VI and impairs platelet functions

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 9 2008
C. C. HSU
Summary.,Background and objectives:,Injuries to the vessel wall and subsequent exposure of the matrix of the subendothelial layer resulted in thrombus formation. Platelet glycoprotein (GP) Ib and VI play a crucial role in matrix-induced activation and aggregation of platelets. Methods and results:,In the present study, we reported that the GPIb-cleaving snake venom metalloproteinase (SVMP), kistomin, inhibited collagen-induced platelet aggregation. Moreover, kistomin inhibited platelet aggregation induced by convulxin (CVX, a GPVI agonist) and a GPVI-specific antibody in a concentration and time-dependent manner. Kistomin treatment decreased platelet GPVI but not integrin ,2,1 and ,IIb,3, accompanied with the formation of GPVI cleavage fragments, as determined by flow cytometric and Western blot analyses. In addition, intact platelet GPVI and recombinant GPVI were digested by kistomin to release 25- and 35-kDa fragments, suggesting that kistomin cleaved GPVI near the mucin-like region. We designed four synthetic peptides ranging from Leu180 to Asn249 as the substrates for kistomin and found that kistomin cleaved these synthetic peptides at FSE205/A206TA and NKV218/F219TT, as analyzed by MALDI-TOF-MS. In addition, GPVI-specific antibody-induced tyrosine kinase phosphorylation in platelets was reduced after kistomin pretreatment, and platelet adhesion to collagen but not to fibrinogen was attenuated by kistomin. Conclusions:,We provided here the first evidence that a P-I snake venom metalloproteinase, kistomin, inhibits the interaction between collagen and platelet GPVI through its proteolytic activity on GPVI, thus providing an alternative strategy for developing new anti-thrombotic agents. [source]


Detection and characterization of variant and modified structures of proteins in blood and tissues by mass spectrometry

MASS SPECTROMETRY REVIEWS, Issue 5 2006
Akira Shimizu
Abstract Some variant proteins cause diseases, and some diseases result in increases of proteins with abnormally modified structures. The detection, characterization, and estimation of the relative amounts of protein variants and abnormally modified proteins are important for clinical diagnosis and for elucidation of the mechanisms of the pathogenesis of diseases. Analysis of the covalent structures of proteins using matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) and liquid chromatography-electrospray ionization MS (LC-ESI-MS), which had been developed by the early 1990s, have largely replaced analyses by conventional protein chemistry. Here, we review the detection and characterization of hemoglobin variants, HbA1c measurement, detection of carbohydrate-deficient transferrin, and identification of variants of transthyretin (TTR) and Cu/Zn-superoxide dismutase (SOD-1) using soft ionization MS. We also propose the diagnostic application of the signals of modified forms of TTR, that is, S-sulfonated TTR and S-homocysteinyl TTR. The relative peak height ratio of the abnormal/normal components gives valuable information about the instability of variants and enables the detection of unstable Hb subunits or thalassemia heterozygotes. We found unique modified structures of TTR that suggested changes in amyloid fibrils. © 2006 Wiley Periodicals, Inc. [source]


Comparative analysis of virulence determinants and mass spectral profiles of Finnish and Lithuanian endodontic Enterococcus faecalis isolates

MOLECULAR ORAL MICROBIOLOGY, Issue 2 2007
A. Reynaud af Geijersstam
Introduction:, Putative virulence factors of Enterococcus faecalis have been proposed by several workers and, by analogy, these have been linked to strains of endodontic origin. However, their distribution within the cell population is unknown. In the present study, isolates were taken from the dental root canals of two defined human populations, Lithuanian and Finnish, and examined for a range of virulence properties. In addition, surface-associated molecules and intracellular proteins were compared using matrix-assisted laser desorption-ionization/mass spectrometry (MALDI-TOF-MS) and ProteinChipTM capture/MS (SELDI-TOF-MS), respectively. Methods:, Twenty-three Lithuanian and 35 Finnish dental root canal isolates were included. The esp, gelE, ace and efaA genes were detected by polymerase chain reaction, and cytolysin and gelatinase phenotypes were determined by hydrolysis of horse blood agar and gelatine agar, respectively. Protein extracts and surface-associated molecules of whole cells were analysed by SELDI-TOF-MS and MALDI-TOF-MS, respectively. Results:, Presence of esp (n = 15), cytolysin (n = 9), ace (n = 55) and efaA (n = 58) was not statistically different in the two samples, whereas gelE and gelatinase production was detected more frequently in the Finnish material (chi-squared, P < 0.01). Analysis of protein profiles by SELDI-TOF-MS showed clustering of cytolysin-producing strains, whereas MALDI-TOF-MS generated profiles that clustered according to the samples' origin and, furthermore, to atypical quinupristin,dalfopristin susceptibility. Conclusion:, A high prevalence of virulence factors was demonstrated in both population types. SELDI-TOF-MS and MALDI-TOF-MS proved useful in distinguishing between different E. faecalis phenotypes and they may be useful technologies for elucidating the eco-distribution of E. faecalis in humans. [source]


Heparin-binding proteins of human seminal plasma: purification and characterization

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 12 2008
Vijay Kumar
Abstract Human seminal plasma (HuSP) contains several proteins that bind heparin and related glycosaminoglycans. Heparin binding proteins (HBPs) from seminal plasma have been shown to participate in modulation of capacitation or acrosome reaction and thus have been correlated with fertility in some species. However, these have not been studied in detail in human. The objective of this study was to purify major HBPs from HuSP in order to characterize these proteins. HBPs were isolated by affinity,chromatography on Heparin,Sepharose column, purified by reverse-phase high-performance liquid chromatography (RP-HPLC) and Size-exclusion chromatography and checked for purity on sodium-dodecyl PAGE (SDS,PAGE). Identification of HBPs was done by matrix-assisted laser desorption-ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS). Here we report the purification and identification of seven HBPs in seminal fluid. The major HBPs are lactoferrin and its fragments, semenogelin I fragments, semenogelin II, prostate specific antigen, homolog of bovine seminal plasma-proteins (BSP), zinc finger protein (Znf 169) and fibronectin fragments. In this study we are reporting for the first time the purification and identification of BSP-homolog and Znf 169 from HuSP and classified them as HBPs. Here we report the purification of seven clinically important proteins from human seminal fluid through heparin affinity chromatography and RP-HPLC, in limited steps with higher yield. Mol. Reprod. Dev. 75: 1767,1774, 2008. © 2008 Wiley-Liss, Inc. [source]


Cranberry proanthocyanidins are cytotoxic to human cancer cells and sensitize platinum-resistant ovarian cancer cells to paraplatin

PHYTOTHERAPY RESEARCH, Issue 8 2009
Ajay P. Singh
Abstract Polyphenolic extracts of the principal flavonoid classes present in cranberry were screened in vitro for cytotoxicity against solid tumor cells lines, identifying two fractions composed principally of proanthocyanidins (PACs) with potential anticancer activity. Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) analysis of the proanthocyanidins (PACs) fractions indicated the presence of A-type PACs with 1,4 linkages containing between 2,8 epicatechin units with a maximum of 1 epigallocatechin unit. PACs exhibited in vitro cytotoxicity against platinum-resistant human ovarian, neuroblastoma and prostate cancer cell lines (IC50 = 79,479 µg/mL) but were non-cytotoxic to lung fibroblast cells (IC50 > 1000 µg/ml). SKOV-3 ovarian cancer cells treated with PACs exhibited classic apoptotic changes. PACs acted synergistically with paraplatin in SKOV-3 cells. Pretreatment of SKOV-3 cells with PACs (106 µg/ml) resulted in a significant reduction of the paraplatin IC50 value. Similarly, in a BrdU incorporation assay, co-treatment of SKOV-3 cells with PACs and paraplatin revealed reduced cell proliferation at lower concentrations than with either individually. In SKOV-3 cell cultures co-treated with PAC-1 and paraplatin, an HPLC analysis indicated differential quantitative presence of various PAC oligomers such as DP-8, -9, -11 and -14 indicating either selective binding or uptake. Cranberry proanthocyanidins exhibit cell-line specific cytotoxicity, induce apoptotic markers and augment cytotoxicity of paraplatin in platinum-resistant SKOV-3 ovarian cancer cells. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Stress-related RNase PR-10c is post-translationally modified by glutathione in birch

PLANT CELL & ENVIRONMENT, Issue 6 2002
K. M. Koistinen
Abstract The PR-10c (previously termed as Bet v 1-Sc3) protein of birch belongs to the family of intracellular pathogenesis-related proteins. The high-performance liquid chromatography electrospray ionization ion trap mass spectrometry (HPLC-ESI-MS) analysis of PR-10c-His fusion protein, produced in Escherichia coli, revealed three major peaks and masses. Enzymatic digestions and HPLC-ESI-MS and matrix assisted laser desorption/ionization , time of flight mass spectrometry (MALDI-TOF-MS) analyses of each fraction indicated that PR-10c-His protein is post-translationally modified by carbamylation and S-glutathiolation. Carbamylation was localized into the N-terminal end of PR-10c-His and does not represent a biologically significant modification. The possible nuclease activity of PR-10c was analysed with S-glutathiolated and reduced fractions of PR-10c-His fusion protein. Both forms of PR-10c-His as well as the dimeric form of the protein possess RNase activity which is capable of digesting different RNA substrates. None of the fractions showed activity against single- or double-stranded DNA. The MALDI-TOF-MS analysis of PR-10c polypeptide extracted from zinc-exposed birch roots showed that the protein is post-translationally modified by glutathione (, -Glu-Cys-Gly) also in vivo. The S-glutathiolated cysteine residue of PR-10c is not conserved among Bet v 1 homologous proteins and is also unique in the PR-10 family. As far as we know this is the first observation of S-glutathiolation in plants, or any post-translational modification in the PR-10 family of proteins. [source]


Application of proteomics for the identification of differentially expressed protein markers for Down syndrome in maternal plasma

PRENATAL DIAGNOSIS, Issue 8 2008
Aggeliki Kolialexi
Abstract Background Despite the large impact of ultrasonographic and biochemical markers on prenatal screening, the ability to accurately diagnose Down syndrome (DS) is still limited and better diagnostic testing is needed. Methods Plasma from 8 women carrying a DS foetus and 12 with non-DS foetuses matched for gestational age, maternal age and ethnicity, in the second trimester of pregnancy, was analysed by two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in order to identify biomarkers for DS. Results Gel comparison revealed nine proteins differentially expressed in maternal plasma in women with DS foetuses. Eight proteins, transthyretin (TTHY), ceruloplasmin (CERU), afamin (AFAM), alpha-1-microglobulin (AMBP), apolipoprotein E (APOE), serum amyloid P-component (SAMP), histidine-rich glycoprotein (HRG) and alpha-1-antitrypsin (A1AT) were up-regulated and one, clusterin (CLUS), down-regulated. All nine proteins are known to be involved in foetal growth and development. APOE, SAMP, AFAM and CLUS are associated with the DS phenotype. Western blot and densitometric analysis of APOE and SAMP confirmed the increase of both proteins by 19 and 48% respectively. Conclusions All differentially expressed proteins are candidate biomarkers for DS, providing opportunities for the development of non-invasive prenatal diagnosis. As these are preliminary findings, follow-up experiments are needed for their evaluation. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Effect of a high-protein diet on food intake and liver metabolism during pregnancy, lactation and after weaning in mice

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 14 2010
Björn Kuhla
Abstract Major hepatic metabolic pathways are involved in the control of food intake but how dietary proteins affect global metabolism to adjust food intake is incompletely understood, particularly under physiological challenging conditions such as lactation. In order to identify these molecular events, mice were fed a high-protein (HP) diet from pregnancy, during lactation until after weaning and compared with control fed counterparts. Liver specimens were analyzed for regulated proteins using 2-DE and MALDI-TOF-MS and plasma samples for metabolites. Based on the 26 differentially expressed proteins associated with depleted liver glycogen content, elevated urea and citrulline plasma concentrations, we conclude that HP feeding during lactation leads to an activated amino acid, carbohydrate and fatty acid catabolism while it activates gluconeogenesis. From pregnancy to lactation, plasma arginine, tryptophan, serine, glutamine and cysteine decreased, whereas urea concentrations increased in both groups. Concomitantly, hepatic glycogen content decreased while total fat content remained unaltered in both groups. Consideration of 59 proteins differentially expressed between pregnancy and lactation highlights different strategies of HP and control fed mice to meet energy requirements for lactation by adjusting amino acid degradation, carbohydrate and fat metabolism, citrate cycle, but also ATP-turnover, protein folding, secretion of proteins and (de)activation of transcription factors. [source]


Secretome analysis of differentially induced proteins in rice suspension-cultured cells triggered by rice blast fungus and elicitor

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 5 2009
Sun Tae Kim
Abstract Secreted proteins were investigated in rice suspension-cultured cells treated with rice blast fungus Magnaporthe grisea and its elicitor using biochemical and 2-DE coupled with MS analyses followed by their in planta mRNA expression analysis. M. grisea and elicitor successfully interacted with suspension-cultured cells and prepared secreted proteins from these cultures were essentially intracellular proteins free. Comparative 2-D gel analyses identified 21 differential protein spots due to M. grisea and/or elicitor over control. MALDI-TOF-MS and ,LC-ESI-MS/MS analyses of these protein spots revealed that most of assigned proteins were involved in defense such as nine chitinases, two germin A/oxalate oxidases, five domain unknown function 26 (DUF 26) secretory proteins, and ,-expansin. One chitin binding chitinase protein was isolated using chitin binding beads and strong enzymatic activity was identified in an in-gel assay. Interestingly, their protein abundance correlated well at transcript levels in elicitor-treated cultures as judged by semi-quantitative RT-PCR. Each identified differentially expressed protein group was compared at transcript levels in rice leaves inoculated with incompatible (KJ401) and compatible (KJ301) races of M. grisea. Time-course profiling revealed their inductions were stronger and earlier in incompatible than compatible interactions. Identified secreted proteins and their expression correlation at transcript level in suspension-cultured cells and also in planta suggest that suspension-cultured cells can be useful to investigate the secretome of rice blast,pathogen interactions. [source]


Cytoplasmic proteome reference map for a glutamic acid-producing Corynebacterium glutamicum ATCC 14067

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 23 2007
Liyuan Li
Abstract We constructed a cytoplasmic proteome reference map for a glutamic acid producing Corynebacterium glutamicum ATCC 14067 by 2-DE and protein identification by MALDI-TOF-MS and PMF using genome database of the type strain ATCC 13032. The map allowed us to identify 166 protein spots representing 139 different proteins. A considerable strain difference was observed in the proteomic images between strains ATCC 14067 and ATCC 13032 grown under the glutamic acid production conditions, suggesting the importance of strain-specific reference map for proteomic analysis. [source]


On-plate digestion of proteins using novel trypsin-immobilized magnetic nanospheres for MALDI-TOF-MS analysis

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 20 2007
Yan Li
Abstract In this study, a novel method of on-plate digestion using trypsin-immobilized magnetic nanospheres was developed followed by MALDI-TOF-MS for rapid and effective analysis and identification of proteins. We utilized a facile one-pot method for the direct preparation of amine-functionalized magnetic nanospheres with highly magnetic properties and the amino groups on the outer surface. Through the reaction of the aldehyde groups with amine groups, trypsin was simply and stably immobilized onto the magnetic nanospheres. The obtained trypsin-linked magnetic nanospheres were then applied for on-plate digestion of sample proteins (myoglobin and Cytochrome c). Moreover, after digestion, the trypsin-linked nanospheres could be easily removed from the plate due to their magnetic property, which would avoid causing contamination on the ion source chamber in MS. The effects of the temperature and incubation time on the digestion efficiency were characterized. Within only 5,min, proteins could be efficiently digested with the peptide sequence coverage higher than or equal to that of the traditional in-solution digestion for 12,h. Furthermore, RPLC fractions of rat liver extract were also successfully processed using this novel method. These results suggested that our improved on-plate digestion protocol for MALDI-MS may find further application in automated analysis of large sets of proteins. [source]


Proteomics analysis of hypothalamic response to energy restriction in dairy cows

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 19 2007
Björn Kuhla
Abstract The hypothalamus is the central regulatory unit that balances a number of body functions including metabolic rate, hunger, and satiety signals. Hypothalamic neurons monitor and respond to alterations of circulating nutrients and hormones that reflect the peripheral energy status. These extracellular signals are integrated within the cell at the ATP:AMP ratio and at the level of ROS, triggering gene expression associated with glucose and lipid metabolism. In order to identify new molecular factors potentially associated with the control of energy homeostasis, metabolic adaptation, and regulation of feed intake, hypothalami from ad libitum fed and energy restricted cows were characterized using 2-DE and MALDI-TOF-MS. Among 189 different protein spots identified, nine proteins were found to be differentially expressed between groups. Beside the 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase, stress-induced phosphoprotein-1, heat shock protein 70,kDa-protein-5, dihydropyrimidinase-related protein-2, [Cu-Zn]-superoxide dismutase, ubiquitin carboxy-terminal hydrolase-L1, and inorganic pyrophosphatase were found to be up-regulated, whereas glyceraldehyde 3-phosphate dehydrogenase and aconitase-2 were down-regulated in the restricted group. In conclusion, differentially expressed proteins are related to energy and nucleotide metabolism and cellular stress under conditions of dietary energy deficiency. These proteins may be new candidate molecules that are potentially involved in signaling for maintaining energy homeostasis. [source]


Integrated analytical approach in veal calves administered the anabolic androgenic steroids boldenone and boldione: urine and plasma kinetic profile and changes in plasma protein expression

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 17 2007
Rosa Draisci
Abstract Surveillance of illegal use of steroids hormones in cattle breeding is a key issue to preserve human health. To this purpose, an integrated approach has been developed for the analysis of plasma and urine from calves treated orally with a single dose of a combination of the androgenic steroids boldenone and boldione. A quantitative estimation of steroid hormones was obtained by LC-APCI-Q-MS/MS analysis of plasma and urine samples obtained at various times up to 36 and 24,h after treatment, respectively. These experiments demonstrated that boldione was never found, while boldenone ,- and ,-epimers were detected in plasma and urine only within 2 and 24,h after drug administration, respectively. Parallel proteomic analysis of plasma samples was obtained by combined 2-DE, MALDI-TOF-MS and ,LC-ESI-IT-MS/MS procedures. A specific protein, poorly represented in normal plasma samples collected before treatment, was found upregulated even 36,h after hormone treatment. Extensive mass mapping experiments proved this component as an N-terminal truncated form of apolipoprotein A1 (ApoA1), a protein involved in cholesterol transport. The expression profile of ApoA1 analysed by Western blot analysis confirmed a significant and time dependent increase of this ApoA1 fragment. Then, provided that further experiments performed with a growth-promoting schedule will confirm these preliminary findings, truncated ApoA1 may be proposed as a candidate biomarker for steroid boldenone and possibly other anabolic androgens misuse in cattle veal calves, when no traces of hormones are detectable in plasma or urine. [source]