MALDI Mass Spectra (maldi + mass_spectrum)

Distribution by Scientific Domains


Selected Abstracts


Comparative analysis of triacylglycerols from Olea europaea L. fruits using HPLC and MALDI-TOFMS

EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 5 2010
Faouzi Sakouhi
Abstract MALDI-TOFMS and HPLC are two analytical methods that were used to characterize triacylglycerols (TAG) of the Meski, Sayali, and Picholine Tunisian olive varieties. The HPLC chromatograms of the oils showed the presence of 15 TAG species, among which triolein (OOO) was the most abundant (21,48%). In the Sayali cultivar, OOO was the predominant TAG species followed by POO and LOO. However, the minor TAG molecules were represented by LnLO and LnLP. MALDI mass spectra produced sodiated ([M,+,Na]+) and potassiated ([M,+,K]+) TAG molecules; only the major TAG were potassiated [OOO,+,K] ([OOO,+,K]+, [POO,+,K]+, and [LOO,+,K]+). In contrast to the HPLC chromatograms, the MALDI mass spectra showed 13 peaks of TAG. The major peak was detected at m/z,907, which corresponds to OOO with an Na+ adduct. The results from both HPLC and MALDI techniques predict the fatty acid composition and their percentages for each olive variety. Practical applications: TAG are the main components in vegetable oils. These biomolecules determine the physical, chemical, and nutritional properties of the oils. The nutritional benefits of TAG are related to DAG (moderate plasma lipid level) and esterified FA, which are intermediate biosynthetic molecules of TAG. TAG analysis is necessary to discriminate between oils of different origin, since some oils have similar FA profiles. Olive products, oils, and table olives, are the main diet sources of TAG in the Mediterranean countries. In this work, chromatographic and spectrometric methods were used for TAG analysis and characterization of Tunisian olive varieties. [source]


Phosphorylation and oligomerization states of native pig brain HSP90 studied by mass spectrometry

FEBS JOURNAL, Issue 8 2001
Cyrille Garnier
HSP90 is one of the most abundant proteins in the cytosol of eukaryotic cells. HSP90 forms transient or stable complexes with several key proteins involved in signal transduction including protooncogenic protein kinases and nuclear receptors, it interacts with cellular structural elements such as actin-microfilament, tubulin-microtubule and intermediate filaments, and also exhibits conventional chaperone functions. This protein exists in two isoforms ,-HSP90 and ,-HSP90, and it forms dimers which are crucial species for its biological activity. PAGE, ESI-MS and MALDI-MS were used to study HSP90 purified from pig brain. The two protein isoforms were clearly distinguished by ESI-MS, the , isoform being ,,six times more abundant than the , isoform. ESI-MS in combination with ,,phosphatase treatment provided direct evidence of the existence of four phosphorylated forms of native pig brain ,-HSP90, with the diphosphorylated form being the most abundant. For the , isoform, the di-phosphorylated was also the most abundant. MALDI mass spectra of HSP90 samples after chemical cross-linking showed a high percentage of ,,, homodimers. In addition, evidence for the existence of higher HSP90 oligomers was obtained. [source]


Serum protein profiling by miniaturized solid-phase extraction and matrix-assisted laser desorption/ionization mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 12 2005
Anne K. Callesen
Serum profiling by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) holds promise as a clinical tool for early diagnosis of cancer and other human diseases. Sample preparation is key to achieving reproducible and well-resolved signals in MALDI-MS; a prerequisite for translation of MALDI-MS based diagnostic methods to clinical applications. We have investigated a number of MALDI matrices and several miniaturized solid-phase extraction (SPE) methods for serum protein concentration and desalting with the aim of generating reproducible, high-quality protein profiles by MALDI-MS. We developed a simple protocol for serum profiling that combines a matrix mixture of 2,5-dihydroxybenzoic acid and , -cyano-4-hydroxycinnamic acid with miniaturized SPE and MALDI-MS. Functionalized membrane discs with hydrophobic, ion-exchange or chelating properties allowed reproducible MALDI mass spectra (m/z 1000,12,000) to be obtained from serum. In a proof-of-principle application, SPE with chelating material and MALDI-MS identified protein peaks in serum that had been previously reported for distinguishing a person diagnosed with breast cancer from a control. These preliminary results indicate that this simple SPE/MALDI-MS method for serum profiling provides a versatile and scalable platform for clinical proteomics. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Investigation and correction of the gene-derived sequence of glutenin subunit 1Dx2 by matrix-assisted laser desorption/ionisation mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 20 2002
Vincenzo Cunsolo
Direct matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) analysis of a mixture of tryptic peptides was used to verify the gene-derived amino acid sequence of the high molecular weight (HMW) subunit 1Dx2 of bread wheat. Analysis of the digest was performed by recording several MALDI mass spectra of the mixture at low, medium and high mass ranges, and optimising the matrix and the acquisition parameters for each mass range. This resulted in coverage of the whole sequence except for a short fragment T3 (3 amino acids), which was not detected. It also allowed the insertion of a Pro residue in position 59 to be identified. The results obtained provide evidence for the lack of a substantial level of glycosylation or other post-translational modifications of subunit 1Dx2, and demonstrate that MALDI-MS is the most useful method presently available for the direct verification of the gene-derived sequences of HMW glutenin subunits and similar proteins. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Application of sulfur as a matrix for laser desorption/ionization in the characterization of halogenated fullerenes

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 2 2002
Alexey V. Streletskiy
The application of sulfur as a matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis of highly chlorinated and fluorinated fullerenes is reported. Control over fluorofullerene fragmentation which resulted in the domination of the molecular peak C60F36, was achieved, with the optimal matrix-to-analyte ratio found to be 1000:1. We suggest the possible mechanism of the molecular ion formation according to the charge transfer between the sulfur anions and C60F36. For the first time the LDI and MALDI mass spectra of the highly chlorinated fullerene C60Clx(xmax,,,32) are presented. The formation of odd chlorine ions (positive and negative) is observed. We conclude that use of sulfur as a matrix leads to a significant decrease in fragmentation of the halogenated fullerenes. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Copper(I) chloride: a simple salt for enhancement of polystyrene cationization in matrix-assisted laser desorption/ionization mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 9 2001
Sándor Kéki
The possibility of using copper(I) chloride as a doping salt to enhance the cationization of polystyrene in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was investigated. It was shown that copper(I) chloride possesses sufficient solubility in tetrahydrofuran. The parameters of the MALDI mass spectra of different polystyrene samples, such as the number-average (Mn) and mass-average (Mw) molecular mass values, obtained by copper(I) cationization were compared with those obtained by means of silver(I) cationization, and good agreement was found. It was also shown that application of copper(I) chloride as a doping salt, and dithranol as a matrix, ensured good MALDI mass spectra of the sample spots even after storage for 1 month. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Epitope mapping of a monoclonal antibody against human thrombin by H/D-exchange mass spectrometry reveals selection of a diverse sequence in a highly conserved protein

PROTEIN SCIENCE, Issue 6 2002
Abel Baerga-Ortiz
Abstract The epitope of a monoclonal antibody raised against human thrombin has been determined by hydrogen/deuterium exchange coupled to MALDI mass spectrometry. The antibody epitope was identified as the surface of thrombin that retained deuterium in the presence of the monoclonal antibody compared to control experiments in its absence. Covalent attachment of the antibody to protein G beads and efficient elution of the antigen after deuterium exchange afforded the analysis of all possible epitopes in a single MALDI mass spectrum. The epitope, which was discontinuous, consisting of two peptides close to anion-binding exosite I, was readily identified. The epitope overlapped with, but was not identical to, the thrombomodulin binding site, consistent with inhibition studies. The antibody bound specifically to human thrombin and not to murine or bovine thrombin, although these proteins share 86% identity with the human protein. Interestingly, the epitope turned out to be the more structured of two surface regions in which higher sequence variation between the three species is seen. [source]