Malaria Vector (malaria + vector)

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by Malaria Vector

  • malaria vector anopheles gambiae

  • Selected Abstracts


    Over expression of a Cytochrome P450 (CYP6P9) in a Major African Malaria Vector, Anopheles Funestus, Resistant to Pyrethroids

    INSECT MOLECULAR BIOLOGY, Issue 1 2008
    D. A. Amenya
    Abstract Anopheles funestus Giles is one of the major African malaria vectors. It has previously been implicated in a major outbreak of malaria in KwaZulu/Natal, South Africa, during the period 1996 to 2000. The re-emergence of this vector was associated with monooxygenase-based resistance to pyrethroid insecticides. We have identified a gene from the monooxygenase CYP6 family, CYP6P9, which is over expressed in a pyrethroid resistant strain originating from Mozambique. Quantitative Real-Time PCR shows that this gene is highly over expressed in the egg and adult stages of the resistant strain relative to the susceptible strain but the larval stages showed almost no difference in expression between strains. This gene is genetically linked to a major locus associated with pyrethroid resistance in this A. funestus population. [source]


    Breeding of Anopheles mosquitoes in irrigated areas of South Punjab, Pakistan

    MEDICAL AND VETERINARY ENTOMOLOGY, Issue 3 2001
    N. Herrel
    Abstract. As part of investigations on potential linkages between irrigation and malaria transmission, all surface water bodies in and around three villages along an irrigation distributary in South Punjab, Pakistan, were surveyed for anopheline mosquito larvae (Diptera: Culicidae) from April 1999 to March 2000. Samples were characterized according to exposure to sunlight, substratum, presence of vegetation, fauna, inorganic matter and physical water condition (clear/turbid/foul). Also water temperature, dissolved oxygen (DO), electroconductivity (EC) and pH of sites were recorded. A total of 37 982 Anopheles larvae of six morphological types were collected from 2992 samples taken from irrigation/agricultural and village/domestic aquatic habitats. Anopheles subpictus Grassi sensu lato was by far the most abundant (74.3%), followed by An. culicifacies Giles s.l. (4.1%), An. stephensi Liston s.l. (2.6%), An. pulcherrimus Theobald (1.8%), An. peditaeniatus Leicester (0.3%) and An. nigerrimus Giles (0.1%). The four most abundant species were significantly associated with waterlogged fields and communal village drinking-water tanks. Habitat characteristics most correlated with occurrence of anophelines were the physical water condition and the absence/presence of fauna, particularly predators. Occurrence and abundance of Anopheles immatures were not significantly correlated with water temperature, DO, EC or pH. Malaria vectors of the Anopheles culicifacies complex occurred at relatively low densities, mainly in irrigated and waterlogged fields. In South Punjab, where rainfall is very low, it should be possible to reduce anopheline breeding through water management, as larvae develop mainly in water bodies that are directly or indirectly related to the extensive canal-irrigation system. [source]


    The accumulation of specific mRNAs following multiple blood meals in Anopheles gambiae

    INSECT MOLECULAR BIOLOGY, Issue 1 2005
    X. Nirmala
    Abstract One approach to genetic control of transmission of the parasites that cause human malaria is based on expressing effector genes in mosquitoes that disable the pathogens. Endogenous mosquito promoter and other cis -acting DNA sequences are needed to direct the optimal tissue-, stage- and sex-specific expression of the effector molecules. The mRNA accumulation profiles of eight different genes expressed specifically in the midgut, salivary glands or fat body tissues of the malaria vector, Anopheles gambiae, were characterized as a measure of their suitability to direct the expression of effector molecules designed to disable specific stages of the parasites. RT-PCR techniques were used to determine the abundance of the gene products and their duration following multiple blood meals. Transcription from the midgut-expressed carboxypeptidase-encoding gene, AgCP, follows a cyclical, blood-inducible expression pattern with maximum accumulation every 3 h post blood meal. Other midgut-expressed genes encoding a trypsin and chymotrypsin, Antryp2 and Anchym1, respectively, and the fat body-expressed genes, Vg1 and Cathepsin, also show a blood-inducible pattern of expression with maximum accumulation 24 h after every blood meal. Expression of the Lipophorin gene in the fat body and apyrase and D7-related genes (AgApy and D7r2) in the salivary glands is constitutive and not significantly affected by blood meals. Promoters of the midgut- and fat body-expressed genes may lead to maximum accumulation of antiparasite effector molecule transcripts after multiple blood meals. The multiple feeding behaviour of An. gambiae thus can be an advantage to express high levels of antiparasite effector molecules to counteract the parasites throughout most of adult development. [source]


    Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient

    INSECT MOLECULAR BIOLOGY, Issue 4 2002
    O. P. Perera
    Abstract Stable and efficient germ-line transformation was achieved in the South American malaria vector, Anopheles albimanus, using a piggyBac vector marked with an enhanced green fluorescent protein gene regulated by the Drosophila melanogaster polyubiquitin promoter. Transgenic mosquitoes were identified from four independent experiments at frequencies ranging from 20 to 43% per fertile G0. Fluorescence was observable throughout the body of larvae and pupae, and abdominal segments of adults. Transgenic lines analysed by Southern hybridization had one to six germ-line integrations, with most lines having three or more integrations. Hybridized transposon vector fragments and insertion site sequences were consistent with precise piggyBac -mediated integrations, although this was not verified for all lines. The piggyBac/PUbnlsEGFP vector appears to be a robust transformation system for this anopheline species, in contrast to the use of a piggyBac vector in An. gambiae. Further tests are needed to determine if differences in anopheline transformation efficiency are due to the marker systems or to organismal or cellular factors specific to the species. [source]


    Isolation of cDNA clones encoding putative odourant binding proteins from the antennae of the malaria-transmitting mosquito, Anopheles gambiae

    INSECT MOLECULAR BIOLOGY, Issue 2 2002
    Harald Biessmann
    Abstract One way of controlling disease transmission by blood-feeding mosquitoes is to reduce the frequency of insect,host interaction, thus reducing the probability of parasite transmission and re-infection. A better understanding of the olfactory processes responsible for allowing mosquitoes to identify human hosts is required in order to develop methods that will interfere with host seeking. We have therefore initiated a molecular approach to isolate and characterize the genes and their products that are involved in the olfactory recognition pathway of the mosquito Anopheles gambiae, which is the main malaria vector in sub-Saharan Africa. We report here the isolation and preliminary characterization of several cDNAs from male and female A. gambiae antennal libraries that encode putative odourant binding proteins. Their conceptual translation products show extensive sequence similarity to known insect odourant binding proteins (OBPs)/pheromone binding proteins (PBPs), especially to those of D. melanogaster. The A. gambiae OBPs described here are expressed in the antennae of both genders, and some of the A. gambiae OBP genes are well conserved in other disease-transmitting mosquito species, such as Aedes aegypti and Culex quinquefasciatus. [source]


    Population analysis using the nuclear white gene detects Pliocene/Pleistocene lineage divergence within Anopheles nuneztovari in South America

    MEDICAL AND VETERINARY ENTOMOLOGY, Issue 2 2008
    L. MIRABELLO
    AbstractAnopheles (Nyssorhynchus) nuneztovari Gabaldón (Diptera: Culicidae), a locally important malaria vector in some regions of South America, has been hypothesized to consist of at least two cryptic incipient species. We investigated its phylogeographic structure in several South American localities to determine the number of lineages and levels of divergence using the nuclear white gene, a marker that detected two recently diverged genotypes in the primary Neotropical malaria vector Anopheles darlingi Root. In An. nuneztovari, five distinct lineages (1,5) were elucidated: (1) populations from northeastern and central Amazonia; (2) populations from Venezuela east and west of the Andes; (3) populations from Colombia and Venezuela west of the Andes; (4) southeastern and western Amazonian Brazil populations, and (5) southeastern and western Amazonian Brazil and Bolivian populations. There was a large amount of genetic differentiation among these lineages. The deepest and earliest divergence was found between lineage 3 and lineages 1, 2 and 4, which probably accounts for the detection of lineage 3 in some earlier studies. The multiple lineages within Amazonia are partially congruent with previous mtDNA and ITS2 data, but were undetected in many earlier studies, probably because of their recent (Pleistocene) divergence and the differential mutation rates of the markers. The estimates for the five lineages, interpreted as recently evolved or incipient species, date to the Pleistocene and Pliocene. We hypothesize that the diversification in An. nuneztovari is the result of an interaction between the Miocene/Pliocene marine incursion and Pleistocene climatic changes leading to refugial isolation. The identification of cryptic lineages in An. nuneztovari could have a significant impact on local vector control measures. [source]


    Habitat characteristics of Anopheles gambiae s.s. larvae in a Kenyan highland

    MEDICAL AND VETERINARY ENTOMOLOGY, Issue 3 2004
    N. Minakawa
    Abstract., Anopheline larval habitats associated with a swamp, were examined in a highland area (1910 m elevation) of western Kenya. A significant association was found between occurrence of Anopheles gambiae Giles s.s. (Diptera: Culicidae) larvae and two factors, habitat size and vegetation type. Over 80% of An. gambiae s.s. larvae were found in small isolated pools, characterized by short plants, occurring in both swamp margins and roadside ditches. However, Anopheles gambiae s.s. was not found in habitats marked by papyrus and floating plants. The larval habitat of An. gambiae s.s. was characterized by warmer daytime temperatures of water, which were significantly affected by habitat size and plant size. The density of indoor resting An. gambiae s.s. was 0.22 per house and negatively associated with distance from the swamp. These results indicate that the practice of swamp cultivation, in populated areas of the African highlands, increases availability and enhances habitat conditions for the malaria vector. [source]


    Temperature-related duration of aquatic stages of the Afrotropical malaria vector mosquito Anopheles gambiae in the laboratory

    MEDICAL AND VETERINARY ENTOMOLOGY, Issue 2 2004
    M. N. Bayoh
    Abstract., Vector abundance is an important factor governing disease risk and is often employed when modelling disease transmission. The longevity of the aquatic stages of mosquitoes (Diptera: Culicidae) dictates the rate of production of adults and hence the intensity of disease transmission. We examined how temperature influences the survival of larval stages (larvae and pupae) of Anopheles gambiae Giles sensu stricto and subsequent adult production of this most efficient malaria vector. Groups of 30 mosquitoes were reared at constant temperatures (from 10 to 40 °C) from the first instar and observed until death or metamorphosis of the last individual. Larvae developed into adults at temperatures ranging from 16 to 34 °C. Larval survival was shortest (< 7 days) at 10,12 °C and 38,40 °C, and longest (> 30 days) at 14,20 °C. Within the temperature range at which adults were produced, larval mortality was highest at the upper range 30,32 °C, with death (rather than adult emergence) representing over 70% of the terminal events. The optimal survival temperatures were lower than the temperatures at which development was quickest, suggesting a critical relationship between temperature and the life cycle of the insect. These data provide fundamental information about An. gambiae s.s. adult productivity at different temperatures, which may facilitate the construction of process-based models of malaria risk in Africa and the development of early warning systems for epidemics. [source]


    Isolation and characterization of microsatellite DNA markers in the malaria vector Anopheles sacharovi

    MOLECULAR ECOLOGY RESOURCES, Issue 3 2003
    M.-L. Guillemin
    Abstract The mosquito Anopheles sacharovi, a member of the A. maculipennis complex, is an important malaria vector in the Middle East. Here we describe the isolation of 15 microsatellite polymorphic loci from the A. sacharovi genome, displaying a high among-individual diversity (0.30,0.92) in a sample from Turkey. Seven loci displayed a significant departure from Hardy,Weinberg proportions, suggesting a substantial frequency of null alleles. The remaining eight loci are good candidates for further genetic studies in this species. [source]


    Isolation and characterization of microsatellite loci in the mosquito Anopheles stephensi Liston (Diptera: Culicidae)

    MOLECULAR ECOLOGY RESOURCES, Issue 4 2002
    A. Verardi
    Abstract The mosquito Anopheles stephensi is an important malaria vector in India, Pakistan, Iran and Afghanistan. Differences in egg morphology and chromosomal characters have been described between urban and rural forms of this mosquito but the population genetic structure remains unclear. In India this species is mainly urban, rural populations are largely zoophilic and not thought to transmit malaria. In eastern Afghanistan and the Punjab and Northwest Frontier Province, Pakistan, it is the major malaria vector. We have developed primers for 16 microsatellite loci to assist in defining the population structure and epidemiological importance of this mosquito. [source]


    Isolation of polymorphic microsatellite markers from the malaria vector Anopheles darlingi

    MOLECULAR ECOLOGY RESOURCES, Issue 4 2001
    Jan E. Conn
    Abstract High molecular weight DNA was extracted from the primary Neotropical malaria vector, Anopheles darlingi from Capanema, Pará, Brazil, to create a small insert genomic library, and then a phagemid library. Enriched sublibraries were constructed from the phagemid library using a microsatellite oligo primed second strand synthesis protocol. The resulting 242 760 individual clones were screened. The mean clone size of the positive clones was 302 bp. Flanking primers were designed for each suitable microsatellite sequence. Eight polymorphic loci were optimized and characterized. The allele size ranges are based on 253 samples of A. darlingi from eastern Amazonian and central Brazil. [source]


    Mode of action of methoprene in affecting female reproduction in the African malaria mosquito, Anopheles gambiae

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 9 2010
    Hua Bai
    Abstract BACKGROUND: One of the most studied actions of juvenile hormone (JH) is its ability to modulate ecdysteroid signaling during insect development and metamorphosis. Previous studies in mosquitoes showed that 20-hydroxyecdysone (20E) regulates vitellogenin synthesis. However, the action of JH and its mimics, e.g. methoprene, on female reproduction of mosquitoes remains unknown. RESULTS: Here, a major malaria vector, Anopheles gambiae Giles, was used as a model insect to study the action of methoprene on female reproduction. Ecdysteroid titers and expression profiles of ecdysone-regulated genes were determined before and after a blood meal. An ecdysteroid peak was detected at 12 h post blood meal (PBM). The maximum expression of ecdysone-regulated genes, such as ecdysone receptor (EcR), hormone receptor 3 (HR3) and vitellogenin (Vg) gene, coincided with the ecdysteroid peak. Interestingly, topical application of methoprene at 6 h PBM delayed ovarian development and egg maturation by suppressing the expression of ecdysone-regulated genes in female mosquitoes. CONCLUSION: The data suggest that ecdysteroid titers are correlated with Vg synthesis, and methoprene affects vitellogenesis by modulating ecdysteroid action in A. gambiae. Copyright © 2010 Society of Chemical Industry [source]


    Spatial expansion and population structure of the neotropical malaria vector, Anopheles darlingi (Diptera: Culicidae)

    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009
    PEDRO M. PEDRO
    Extensive population structuring is known to occur in Anopheles darlingi, the primary malaria vector of the Neotropics. We analysed the phylogeographic structure of the species using the mitochondrial cytochrome oxidase I marker. Diversity is divided into six main population groups in South America: Colombia, central Amazonia, southern Brazil, south-eastern Brazil, and two groups in north-east Brazil. The ancestral distribution of the taxon is hypothesized to be central Amazonia, and there is evidence of expansion from this region during the late Pleistocene. The expansion was not a homogeneous front, however, with at least four subgroups being formed due to geographic barriers. As the species spread, populations became isolated from each other by the Amazon River and the coastal mountain ranges of south-eastern Brazil and the Andes. Analyses incorporating distances around these barriers suggest that the entire South American range of An. darlingi is at mutation,dispersal,drift equilibrium. Because the species is distributed throughout such a broad area, the limited dispersal across some landscape types promotes differentiation between otherwise proximate populations. Moreover, samples from the An. darlingi holotype location in Rio de Janeiro State are substantially derived from all other populations, implying that there may be additional genetic differences of epidemiological relevance. The results obtained contribute to our understanding of gene flow in this species and allow the formulation of human mosquito health protocols in light of the potential population differences in vector capacity or tolerance to control strategies. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 854,866. [source]


    Surveillance of vivax malaria vectors and civilian patients for malaria high-risk areas in northern Gyeonggi and Gangwon Provinces near the demilitarized zone, Republic of Korea, 2003,2006

    ENTOMOLOGICAL RESEARCH, Issue 4 2010
    Jae Chul SHIM
    Abstract After re-emergence of malaria in 1993, a continued increase in Plasmodium vivax cases was observed from 1993 to 2006 in northern Gyeonggi and Gangwon Provinces adjacent to the demilitarized zone separating North from South Korea. Annual parasite incidence per 1000 people ranged from 0.33 in 2004 to 0.89 in 2006. While malaria case rates declined (22.6%) in 2004, they increased 75.1% in 2005 and 51.7% in 2006 from the previous years. An initial incorrect diagnosis of 46.8% of malaria cases as common cold resulted in a mean delay of 1.3 days for the detection malarial parasites. Of the total cases, 10.2% from December to May were due to latent intrinsic incubation infections acquired the previous malaria season and the rest of the cases from June to November were either latent or short incubation infections. Overall, the peak anopheline population occurred from July to September, resulting in a similar peak in malaria cases. While malaria cases increased during 2005,2006, anopheline populations, based on trap indices, were not significantly different during 4 years of surveillance. To decrease the malaria patient infective period to mosquitoes, public health centers in Paju and Cheorwon in 2006 prescribed chloroquine + primaquine at days 0,3 after initial malaria diagnosis followed by an additional 11 days of primaquine (early primaquine treatment), rather than chloroquine on days 0,3 and primaquine on days 4,17 (delayed primaquine treatment). A reduction in the malaria parasite incidence during 2007 was recorded for the two locations offering the early primaquine treatment relative to other locations using the delayed primaquine treatment. [source]


    Over expression of a Cytochrome P450 (CYP6P9) in a Major African Malaria Vector, Anopheles Funestus, Resistant to Pyrethroids

    INSECT MOLECULAR BIOLOGY, Issue 1 2008
    D. A. Amenya
    Abstract Anopheles funestus Giles is one of the major African malaria vectors. It has previously been implicated in a major outbreak of malaria in KwaZulu/Natal, South Africa, during the period 1996 to 2000. The re-emergence of this vector was associated with monooxygenase-based resistance to pyrethroid insecticides. We have identified a gene from the monooxygenase CYP6 family, CYP6P9, which is over expressed in a pyrethroid resistant strain originating from Mozambique. Quantitative Real-Time PCR shows that this gene is highly over expressed in the egg and adult stages of the resistant strain relative to the susceptible strain but the larval stages showed almost no difference in expression between strains. This gene is genetically linked to a major locus associated with pyrethroid resistance in this A. funestus population. [source]


    The kdr mutation occurs in the Mopti form of Anopheles gambiaes.s. through introgression

    INSECT MOLECULAR BIOLOGY, Issue 5 2000
    M. Weill
    Abstract Anopheles gambiaes.s. is a complex of sibling taxa characterized by various paracentric inversions. In west and central Africa, where several taxa are sympatric, a kdr mutation responsible for pyrethroid resistance has been described in only one (the S taxon), suggesting an absence of gene flow between them. Following a thorough sampling, we have found a kdr mutation in another taxon (M). To establish whether this mutation is the same event or not, the large intron upstream of the kdr mutation was sequenced to find polymorphic sites in susceptible/resistant and M/S mosquitoes. The low genetic diversity found in this DNA region indicates that a local genetic sweep has recently occurred. However, some polymorphic sites were found, and it is therefore concluded that the kdr mutation in the M taxon is not an independent mutation event, and is best explained by an introgression from the S taxon. These results are discussed within the context of possible gene flow between members of An. gambiae s.s. taxa, and with the possible spread of the kdr mutation in other closely related malaria vectors of the An. gambiae complex. [source]


    Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential

    MEDICAL AND VETERINARY ENTOMOLOGY, Issue 1 2007
    K. WALKER
    Abstract Malaria vector control targeting the larval stages of mosquitoes was applied successfully against many species of Anopheles (Diptera: Culicidae) in malarious countries until the mid-20th Century. Since the introduction of DDT in the 1940s and the associated development of indoor residual spraying (IRS), which usually has a more powerful impact than larval control on vectorial capacity, the focus of malaria prevention programmes has shifted to the control of adult vectors. In the Afrotropical Region, where malaria is transmitted mainly by Anopheles funestus Giles and members of the Anopheles gambiae Giles complex, gaps in information on larval ecology and the ability of An. gambiae sensu lato to exploit a wide variety of larval habitats have discouraged efforts to develop and implement larval control strategies. Opportunities to complement adulticiding with other components of integrated vector management, along with concerns about insecticide resistance, environmental impacts, rising costs of IRS and logistical constraints, have stimulated renewed interest in larval control of malaria vectors. Techniques include environmental management, involving the temporary or permanent removal of anopheline larval habitats, as well as larviciding with chemical or biological agents. This present review covers large-scale trials of anopheline larval control methods, focusing on field studies in Africa conducted within the past 15 years. Although such studies are limited in number and scope, their results suggest that targeting larvae, particularly in human-made habitats, can significantly reduce malaria transmission in appropriate settings. These approaches are especially suitable for urban areas, where larval habitats are limited, particularly when applied in conjunction with IRS and other adulticidal measures, such as the use of insecticide treated bednets. [source]


    Pyrethroid resistance/susceptibility and differential urban/rural distribution of Anopheles arabiensis and An. gambiae s.s. malaria vectors in Nigeria and Ghana

    MEDICAL AND VETERINARY ENTOMOLOGY, Issue 3 2003
    M. Kristan
    Abstract., Resistance to pyrethroid insecticides and DDT caused by the kdr gene in the malaria vector Anopheles gambiae Giles s.s. (Diptera: Culicidae) has been reported in several West African countries. To test for pyrethroid resistance in two more countries, we sampled populations of the An. gambiae complex from south-western Ghana and from urban and rural localities in Ogun State, south-west Nigeria. Adult mosquitoes, reared from field-collected larvae, were exposed to the WHO-recommended discriminating dosage of exposure for 1 h to DDT 4%, deltamethrin 0.05% or permethrin 0.75% and mortality was recorded 24 h post-exposure. Susceptibility of An. gambiae s.l. to DDT was 94,100% in Ghana and 72,100% in Nigeria, indicating low levels of DDT resistance. Deltamethrin gave the highest mortality rates: 97,100% in Ghana, 95,100% in Nigeria. Ghanaian samples of An. gambiae s.l. were fully susceptible to permethrin, whereas some resistance to permethrin was detected at 4/5 Nigerian localities (percentage mortalities 75, 82, 88, 90 and 100%), with survivors including both An. arabiensis Patton and An. gambiae s.s. identified by PCR assay. Even so, the mean knockdown time was not significantly different from a susceptible reference strain, indicating absence or low frequency of kdr -type resistance. Such low levels of pyrethroid resistance are unlikely to impair the effectiveness of pyrethroid-impregnated bednets against malaria transmission. Among Nigerian samples of An. gambiae s.l., the majority from two urban localities were identified as An. arabiensis, whereas the majority from rural localities were An. gambiae s.s. These findings are consistent with those of M. Coluzzi et al. (1979). Differences of ecological distribution between molecular forms of An. gambiae s.s. were also found, with rural samples almost exclusively of the S-form, whereas the M-form predominated in urban samples. It is suggested that ,urban island' populations of An. arabiensis and of An. gambiae s.s. M-form in the rainforest belt of West Africa might be appropriate targets for elimination of these malaria vectors by the sterile insect technique. [source]


    Olyset Net® efficacy against pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus after 3 years' field use in Côte d'Ivoire

    MEDICAL AND VETERINARY ENTOMOLOGY, Issue 1 2001
    R. N'Guessan
    Summary Pyrethroid-impregnated bednets are advocated for personal protection against malaria vectors. To avoid the need for periodic re-treatment, it would be advantageous to have nets that retain insecticidal efficacy for years and withstand repeated washing. Such a type of commercially produced bednet with permethrin 2% incorporated in polyethylene fibres (trademark Olyset Net® supplied by Sumika Life-Tech Co., Osaka, Japan) was evaluated against mosquitoes in veranda-trap huts at Yaokoffikro, near Bouaké, Côte d'Ivoire, by standard WHOPES phase II procedures. Four Olyset Nets were compared with a standard untreated polyester net as control. They comprised three examples previously used in a village for over 3 years (one washed, one dirty, one very dirty) and a previously unused Olyset Net, newly unwrapped, from the same original batch. Bioassays with 3 min exposure of susceptible Anopheles gambiae Giles (Diptera: Culicidae) gave >,99% mortality of female mosquitoes tested on the ,new' Olyset Net. The used Olyset Nets gave mortality rates averaging 83% for the washed net, 85% for the dirty net and 55% for the very dirty net (within 24-h following 3 min exposure). Thus, Olyset Nets were found to remain remarkably effective against susceptible An. gambiae for at least 3 years under field conditions. Wild pyrethroid-resistant populations of Culex quinquefasciatus Say and An. gambiae (savanna cytotype with 96% kdr) were assessed during June,August 1999 for their responses to sleepers protected by nets in the experimental huts. With regard to hut entry by foraging female mosquitoes, Olyset Nets showed some deterrency against An. gambiae (44% reduction by the new net, ,20% by the dirty nets, none by the washed net), but not against Cx. quinquefasciatus. Among mosquitoes entering the hut with untreated control net, 30,34% tried to leave (exophily) but were caught in the verandah trap. The permethrin repellency of Olyset Nets increased exophily by 19% for An. gambiae and 14% for Cx. quinquefasciatus. Blood-feeding rates were 16% An. gambiae and 35% Cx. quinquefasciatus in the hut with sleeper under the untreated net (showing considerable prevention of biting), 22,26% of both species in huts with washed or dirty used Olyset Nets (not significantly different from control), while the biting success rate of Cx. quinquefasciatus (but not kdr An. gambiae) was more than halved by the ,new' Olyset Net. Mortality rates of pyrethroid-resistant An. gambiae and Cx. quinquefasciatus from the huts were, respectively, 3% and 8% with the untreated polyester net, 27.5% and 17% with the ,new' Olyset, 15% and 17.5% with the washed Olyset, 16,25% and 17,20% with dirty old Olyset Nets. Kill differences between nets are significantly different for both An. gambiae and Cx. quinquefasciatus. Unfortunately the washed used Olyset Net showed least activity against resistant mosquitoes, despite its greatest activity against susceptible An. gambiae. In each case there was evidence that a high proportion of mosquitoes failed to feed through the net (many of them dying from starvation when they could not leave the closed hut), with indications that dirty Olyset nets enhanced this protective value. [source]