Maize Varieties (maize + variety)

Distribution by Scientific Domains


Selected Abstracts


The effect of roasting on the nutritional and antioxidant properties of yellow and white maize varieties

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 6 2010
Ganiyu Oboh
Summary Maize varieties (yellow and white) were roasted for 17 min; and allowed to cool, and later milled into powder. The nutritional evaluation (proximate composition, mineral and antinutrient content determination) and antioxidant properties investigation (reducing power, free radicals scavenging ability and Fe2+ chelating ability) of the product was subsequently carried out. The result of the study revealed that roasting caused a significant increase (P < 0.05) in the crude fat, carbohydrate, Ca, Na, Mg and Zn content. Conversely, a significant decrease (P < 0.05) was observed in crude protein, crude fibre, Fe and K content. A significant decrease in the phytate content was also observed. However, the reduced phytate content did not have sparing effect on Zn bioavailability. Roasting significantly (P < 0.05) reduced the extractible phenol and flavonoid content of the maize varieties. The antioxidant properties (1,1-diphenyl-2-picrylhydracyl free radical scavenging ability and Fe2+ chelating ability) followed the phenolic content pattern. However, roasting caused a significant increase in the ferric reducing antioxidant power of the maize varieties. Thus, roasting reduced the protein content of maize but also increased the energy value and antioxidant capacity as exemplified by high reducing power. [source]


Nitrogen uptake and utilization efficiency of European maize hybrids developed under conditions of low and high nitrogen input

PLANT BREEDING, Issue 6 2002
T. Presterl
Abstract Maize varieties with improved nitrogen(N)-use efficiency under low soil N conditions can contribute to sustainable agriculture. Tests were carried to see whether selection of European elite lines at low and high N supply would result in hybrids with differential adaptation to these contrasting N conditions. The objective was to analyze whether genotypic differences in N uptake and N-utilization efficiency existed in this material and to what extent these factors contributed to adaptation to low N supply. Twenty-four hybrids developed at low N supply (L × L) were compared with 25 hybrids developed at high N supply (H × H). The N uptake was determined as total above-ground N in whole plants, and N-utilization efficiency as the ratio between grain yield and N uptake in yield trials at four locations and at three N levels each. Highly significant variations as a result of hybrids and hybrids × N-level interaction were observed for grain yield as well as for N uptake and N-utilization efficiency in both hybrid types. Average yields of the L × L hybrids were higher than those of the H × H hybrids by 11.5% at low N supply and 5.4% at medium N level. There was no significant yield difference between the two hybrid types at high N supply. The L × L hybrids showed significantly higher N uptake at the low (12%) and medium (6%) N levels than the H × H hybrids. In contrast, no differences in N-utilization efficiency were observed between the hybrid types. These results indicate that adaptation of hybrids from European elite breeding material to conditions with reduced nitrogen input was possible and was mainly the result of an increase in N-uptake efficiency. [source]


The effect of roasting on the nutritional and antioxidant properties of yellow and white maize varieties

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 6 2010
Ganiyu Oboh
Summary Maize varieties (yellow and white) were roasted for 17 min; and allowed to cool, and later milled into powder. The nutritional evaluation (proximate composition, mineral and antinutrient content determination) and antioxidant properties investigation (reducing power, free radicals scavenging ability and Fe2+ chelating ability) of the product was subsequently carried out. The result of the study revealed that roasting caused a significant increase (P < 0.05) in the crude fat, carbohydrate, Ca, Na, Mg and Zn content. Conversely, a significant decrease (P < 0.05) was observed in crude protein, crude fibre, Fe and K content. A significant decrease in the phytate content was also observed. However, the reduced phytate content did not have sparing effect on Zn bioavailability. Roasting significantly (P < 0.05) reduced the extractible phenol and flavonoid content of the maize varieties. The antioxidant properties (1,1-diphenyl-2-picrylhydracyl free radical scavenging ability and Fe2+ chelating ability) followed the phenolic content pattern. However, roasting caused a significant increase in the ferric reducing antioxidant power of the maize varieties. Thus, roasting reduced the protein content of maize but also increased the energy value and antioxidant capacity as exemplified by high reducing power. [source]


Drip Irrigation Frequency: The Effects and Their Interaction with Nitrogen Fertilization on Sandy Soil Water Distribution, Maize Yield and Water Use Efficiency Under Egyptian Conditions

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 3 2008
S. E. El-Hendawy
Abstract Irrigation frequency is one of the most important factors in drip irrigation scheduling that affects the soil water regime, the water and fertilization use efficiency and the crop yield, although the same quantity of water is applied. Therefore, field experiments were conducted for 2 years in the summer season of 2005 and 2006 on sandy soils to investigate the effects of irrigation frequency and their interaction with nitrogen fertilization on water distribution, grain yield, yield components and water use efficiency (WUE) of two white grain maize hybrids (Zea mays L.). The experiment was conducted by using a randomized complete block split-split plot design, with four irrigation frequencies (once every 2, 3, 4 and 5 days), two nitrogen levels (190 and 380 kg N ha,1), and two maize hybrids (three-way cross 310 and single cross 10) as the main-plot, split-plot, and split-split plot treatments respectively. The results indicate that drip irrigation frequency did affect soil water content and retained soil water, depending on soil depth. Grain yield with the application of 190 kg N ha,1 was not statistically different from that at 380 kg N ha,1 at the irrigation frequency once every 5 days. However, the application of 190 kg N ha,1 resulted in a significant yield reduction of 25 %, 18 % and 9 % in 2005 and 20 %, 13 % and 6 % in 2006 compared with 380 kg N ha,1 at the irrigation frequencies once every 2, 3 and 4 days respectively. The response function between yield components and irrigation frequency treatments was quadratic in both growing seasons except for 100-grain weight, where the function was linear. WUE increased with increasing irrigation frequency and nitrogen levels, and reached the maximum values at once every 2 and 3 days and at 380 kg N ha,1. In order to improve the WUE and grain yield for drip-irrigated maize in sandy soils, it is recommended that irrigation frequency should be once every 2 or 3 days at the investigated nitrogen levels of 380 kg N ha,1 regardless of maize varieties. However, further optimization with a reduced nitrogen application rate should be aimed at and will have to be investigated. [source]


The economic and poverty impacts of maize research in West and Central Africa

AGRICULTURAL ECONOMICS, Issue 5 2009
Arega D. Alene
Maize research; Economic surplus; Poverty reduction; West Africa Abstract This article assembles the results of three multicountry surveys on variety performance and adoption patterns to measure the impacts of maize research in West and Central Africa from 1981 to 2005, and uses cost data since 1971 to compute social rates of return on public investments in maize research in the region. Adoption of modern varieties increased from less than 5% of the maize area in the 1970s to about 60% in 2005, yielding an aggregate rate of return on research and development (R&D) investment of 43%. The estimated number of people moved out of poverty through adoption of new maize varieties rose gradually in the 1980s to more than one million people per year since the mid 1990s. Over half of these impacts can be attributed to international maize research at IITA and CIMMYT. The article concludes with a discussion of strategic options to enhance the impacts of maize research in the region. [source]


Chemical composition and in vitro starch digestibility of pigmented corn tortilla

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 13 2007
Juan Pablo Hernández-Uribe
Abstract BACKGROUND: Tortillas were prepared from two (blue and regular white) maize varieties and compared with regard to chemical composition and in vitro starch digestibility, i.e., available starch (AS), total (RS) and retrograde (RRS) resistant starch contents, amylolysis rate and predicted glycemic index (pGI). The impact of cold storage (4 °C) on digestibility was also investigated. RESULTS: Despite its higher protein and lipid contents, pigmented tortilla exhibited lower AS content than the white product. AS in both types of tortilla decreased during the first 2 days of storage, and remained stable thereafter. Blue tortilla had lower RS content (21 g kg,1 dry matter basis) than the white tortilla (30 g kg,1 dry matter basis). RS values were slightly higher in 2 day-stored tortillas than in their fresh counterparts. Although the RRS content in recently made white tortillas was greater than in the colored preparation, stored blue tortillas exhibited double RRS values compared with freshly baked samples. ,-Amylolysis of blue tortilla was slower than in the white sample. Consequently, blue tortilla exhibited a lower pGI value. pGI for the white tortilla decreased upon cold storage, a change that was not be observed for the colored preparation. CONCLUSION: Starch digestibility characteristics of blue tortilla make it suitable for people with special nutritional or metabolic requirements. Copyright © 2007 Society of Chemical Industry [source]


Temporal changes of resource use, soil fertility and economic situation in upland Northwest Vietnam

LAND DEGRADATION AND DEVELOPMENT, Issue 1 2002
A. Wezel
Abstract Agricultural land in lowland Vietnam is scarce due to population growth. Hence, cultivation is increasingly practised on the steep upland slopes. Factors affecting resource use, soil fertility and household economics were studied in six villages of the Black Thai ethnic group in northwest Vietnam. Farmers were interviewed about their individual household situation. Yield development of major crops and cropping patterns in upland cultivation over the last 50 years were recorded in group discussions. In addition, soil fertility was analysed on different land-use units. Formerly predominant upland rice changed to maize and cassava production at present. Decreasing soil fertility and a shift from subsistence to market-oriented production, facilitated by new maize varieties and better access to markets are major causes. The Black Thai farmers economy has improved in recent years. The decline in soil fertility is concealed by higher maize yields from new varieties, and soil fertility conservation ranks low among farmers' priorities. The improved economy of the individual households might be of short duration if farmers cannot be sensitized to new resource management options. These have to be developed in line with farmers' priorities and the fragile environment of Vietnam's uplands. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize

PLANT BIOTECHNOLOGY JOURNAL, Issue 6 2004
Ruidang Quan
Summary Glycine betaine plays an important role in some plants, including maize, in conditions of abiotic stress, but different maize varieties vary in their capacity to accumulate glycine betaine. An elite maize inbred line DH4866 was transformed with the betA gene from Escherichia coli encoding choline dehydrogenase (EC 1.1.99.1), a key enzyme in the biosynthesis of glycine betaine from choline. The transgenic maize plants accumulated higher levels of glycine betaine and were more tolerant to drought stress than wild-type plants (non-transgenic) at germination and the young seedling stage. Most importantly, the grain yield of transgenic plants was significantly higher than that of wild-type plants after drought treatment. The enhanced glycine betaine accumulation in transgenic maize provides greater protection of the integrity of the cell membrane and greater activity of enzymes compared with wild-type plants in conditions of drought stress. [source]


The direct and indirect impacts of population growth and economic development on maize (Zea mays L.) diversity in highland Guatemala

AREA, Issue 1 2009
Michael K Steinberg
This paper discusses the impacts of population growth and economic development on maize diversity in highland Guatemala. In the context of this discussion, economic development specifically refers to the recent expansion of the non-traditional agricultural exports (NTAEs). Population growth and economic development (i.e. NTAEs) are linked because as land has become scarce in highland Guatemala, due to the poor distribution of land resources and rapid population growth over the past 50 years, many farmers have turned to non-traditional economic strategies such as new crops that produce more income per unit of land. These new crops have improved the economic conditions of many farming families, but it has come at a cost regarding the maintenance of local maize varieties and household food security. [source]


Evaluation of stress- and immune-response biomarkers in Atlantic salmon, Salmo salar L., fed different levels of genetically modified maize (Bt maize), compared with its near-isogenic parental line and a commercial suprex maize

JOURNAL OF FISH DISEASES, Issue 4 2007
A Sagstad
Abstract The present study was designed to evaluate if genetically modified (GM) maize (Bt maize, event MON810) compared with the near-isogenic non-modified (nGM) maize variety, added as a starch source at low or high inclusions, affected fish health of post-smolt Atlantic salmon, Salmo salar L. To evaluate the health impact, selected stress- and immune-response biomarkers were quantified at the gene transcript (mRNA) level, and some also at the protein level. The diets with low or high inclusions of GM maize, and its near-isogenic nGM parental line, were compared to a control diet containing GM-free suprex maize (reference diet) as the only starch source. Total superoxide dismutase (SOD) activity in liver and distal intestine was significantly higher in fish fed GM maize compared with fish fed nGM maize and with the reference diet group. Fish fed GM maize showed significantly lower catalase (CAT) activity in liver compared with fish fed nGM maize and to the reference diet group. In contrast, CAT activity in distal intestine was significantly higher for fish fed GM maize compared with fish fed reference diet. Protein level of heat shock protein 70 (HSP70) in liver was significantly higher in fish fed GM maize compared with fish fed the reference diet. No diet-related differences were found in normalized gene expression of SOD, CAT or HSP70 in liver or distal intestine. Normalized gene expression of interleukin-1 beta in spleen and head-kidney did not vary significantly between diet groups. Interestingly, fish fed high GM maize showed a significantly larger proportion of plasma granulocytes, a significantly larger sum of plasma granulocyte and monocyte proportions, but a significantly smaller proportion of plasma lymphocytes, compared with fish fed high nGM maize. In conclusion, Atlantic salmon fed GM maize showed some small changes in stress protein levels and activities, but none of these changes were comparable to the normalized gene expression levels analysed for these stress proteins. GM maize seemed to induce significant changes in white blood cell populations which are associated with an immune response. [source]