Home About us Contact | |||
Maize Hybrids (maize + hybrid)
Selected AbstractsAscorbate-dependent hydrogen peroxide detoxification and ascorbate regeneration during germination of a highly productive maize hybrid: Evidence of an improved detoxification mechanism against reactive oxygen speciesPHYSIOLOGIA PLANTARUM, Issue 1 2000Laura De Gara Ascorbate content and the activities of some key enzymes involved in the detoxification from reactive oxygen species were investigated in germinated embryos of two Zea mays L. inbred lines (B73 and Mo17) and of their heterotic F1 hybrid (B73×Mo17). The F1 hybrid showed a higher ascorbate biosynthetic capability owing to a higher activity of l -galactono- , -lactone dehydrogenase (EC 1.6.5.4), the last enzyme in ascorbate biosynthesis. Ascorbate peroxidase (EC 1.11.1.11), ascorbate free radical reductase (EC 1.6.5.4) and dehydroascorbate reductase (EC 1.8.5.1) activities were much higher in the F1 hybrid than in either inbred line, whereas catalase (EC 1.11.1.6) activity was similar in the three genotypes. Native polyacrylamide gel electrophoresis (PAGE) analysis showed three forms of cytosolic ascorbate peroxidase, both in parental lines and in the F1 hybrid. On the other hand, a complex pattern of proteins with dehydroascorbate reductase activity was observed, with the hybrid combining the different dehydroascorbate-reducing proteins expressed by the inbred lines. The possible involvement of the enzymes of the ascorbate system in the phenomenon of hybrid vigour is discussed. [source] Drip Irrigation Frequency: The Effects and Their Interaction with Nitrogen Fertilization on Sandy Soil Water Distribution, Maize Yield and Water Use Efficiency Under Egyptian ConditionsJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 3 2008S. E. El-Hendawy Abstract Irrigation frequency is one of the most important factors in drip irrigation scheduling that affects the soil water regime, the water and fertilization use efficiency and the crop yield, although the same quantity of water is applied. Therefore, field experiments were conducted for 2 years in the summer season of 2005 and 2006 on sandy soils to investigate the effects of irrigation frequency and their interaction with nitrogen fertilization on water distribution, grain yield, yield components and water use efficiency (WUE) of two white grain maize hybrids (Zea mays L.). The experiment was conducted by using a randomized complete block split-split plot design, with four irrigation frequencies (once every 2, 3, 4 and 5 days), two nitrogen levels (190 and 380 kg N ha,1), and two maize hybrids (three-way cross 310 and single cross 10) as the main-plot, split-plot, and split-split plot treatments respectively. The results indicate that drip irrigation frequency did affect soil water content and retained soil water, depending on soil depth. Grain yield with the application of 190 kg N ha,1 was not statistically different from that at 380 kg N ha,1 at the irrigation frequency once every 5 days. However, the application of 190 kg N ha,1 resulted in a significant yield reduction of 25 %, 18 % and 9 % in 2005 and 20 %, 13 % and 6 % in 2006 compared with 380 kg N ha,1 at the irrigation frequencies once every 2, 3 and 4 days respectively. The response function between yield components and irrigation frequency treatments was quadratic in both growing seasons except for 100-grain weight, where the function was linear. WUE increased with increasing irrigation frequency and nitrogen levels, and reached the maximum values at once every 2 and 3 days and at 380 kg N ha,1. In order to improve the WUE and grain yield for drip-irrigated maize in sandy soils, it is recommended that irrigation frequency should be once every 2 or 3 days at the investigated nitrogen levels of 380 kg N ha,1 regardless of maize varieties. However, further optimization with a reduced nitrogen application rate should be aimed at and will have to be investigated. [source] Impact of Water Stress on Maize Grown Off-Season in a Subtropical EnvironmentJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2007C. M. T. Soler Abstract During the last decade, the production of off-season maize has increased in several regions of Brazil. Growing maize during this season, with sowing from January through April, imposes several climatic risks that can impact crop yield. This is mainly caused by the high variability of precipitation and the probability of frost during the reproduction phases. High production risks are also partially due to the use of cultivars that are not adapted to the local environmental conditions. The goal of this study was to evaluate crop growth and development and associated yield, yield components and water use efficiency (WUE) for maize hybrids with different maturity ratings grown off-season in a subtropical environment under both rainfed and irrigated conditions. Three experiments were conducted in 2001 and 2002 in Piracicaba, state of São Paulo, Brazil with four hybrids of different maturity duration, AG9010 (very short season), DAS CO32 and Exceler (short season) and DKB 333B (normal season). Leaf area index (LAI), plant height and dry matter were measured approximately every 18 days. Under rainfed conditions, the soil water content in the deeper layers was reduced, suggesting that the extension of the roots into these layers was a response to soil water limitations. On average, WUE varied from 1.45 kg m,3 under rainfed conditions to 1.69 kg m,3 under irrigated conditions during 2001. The average yield varied from 4209 kg ha,1 for the hybrids grown under rainfed conditions to 5594 kg ha,1 under irrigated conditions during 2001. Yield reductions under rainfed conditions were affected by the genotype. For the hybrid DKB 333B with a normal maturity, yield was reduced by 25.6 % while the short maturity hybrid Exceler was the least impacted by soil water limitations with a yield reduction of only 8.4 %. To decrease the risk of yield loss, the application of supplemental irrigation should be considered by local farmers, provided that this practice is not restricted by either economic considerations or the availability of sufficient water resources. [source] Responses of transgenic maize hybrids to variant western corn rootworm larval injuryJOURNAL OF APPLIED ENTOMOLOGY, Issue 6 2007M. E. Gray Abstract:, In 2005 and 2006, transgenic insecticidal maize hybrids (YieldGard Rootworm, MON 863, Cry3Bb1, Vector ZMIR 13L) were evaluated for their ability to limit root injury caused by western corn rootworm (Diabrotica virgifera virgifera LeConte) larval feeding. Hybrids in each year of the experiment were planted in plots that had been devoted to a trap crop (late-planted maize interplanted with pumpkins) the previous growing season. All maize hybrids were provided by Monsanto Company and the genetic backgrounds remain unknown to the investigators. In 2005, the experiment was conducted in Urbana, Illinois. Urbana is located in east central Illinois, an area of the state in which a variant of the western corn rootworm has overcome the pest management benefits of crop rotation. Variation in root injury was noted across the maize hybrids in 2005 and the level of pruning increased from 20 July to 9 August for most hybrids. In 2006, the experiment was conducted in two locations, Monmouth and Urbana, Illinois. Monmouth is located in north-western Illinois and is within an area of the state in which densities of the variant of the western corn rootworm are lower than in east-central Illinois. In 2006, variation in root protection was again observed across the maize hybrids. Root injury differences among the hybrids were more prominent at the Urbana site. Similar to the previous year, root injury increased from the third week in July to the first week of August at both locations with this increase most noticeable at the Urbana location. We hypothesize that the variant western corn rootworm may be able to inflict more root injury to these transgenic insecticidal maize hybrids than the non-variant population of this species. [source] Starch and fibre distribution in maize silages in relation to particle sizeJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 3 2003I Fernandez Abstract In a first trial the particle size distribution of four maize silages was measured by two different sieving methods, dry and wet sieving. Particle size distribution was quantified by three values, mean particle size, extent of dispersion, and proportion of large particles. Wet sieving separated particles better than dry sieving and was more suitable for measuring maize silage particle size. In a second trial the particle size distribution of 10 maize hybrids grown in the same conditions was measured by wet sieving. Starch proportion in large particles varied widely between maize hybrids, from 39.7 to 82.4%, against a variation from 75.4 to 100% for cell wall proportion in the same class of particles, and these variations might be predicted by dry matter distribution. © 2003 Society of Chemical Industry [source] Assessment of protein nutritional quality and effects of traditional processes: A comparison between Ethiopian quality protein maize and five Ethiopian adapted normal maize cultivarsMOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 4 2003Habtamu Fufa Abstract The present study was designed to quantitatively measure and compare the levels and variations of total protein, individual amino acids, and computed protein efficiency ratio (C-PER) in raw and traditionally processed products of one recently released quality protein maize (QPM BH542) with four high-yield maize hybrids, namely flint BH660, semi-dent BH140, Pioneer 30H83, and Pioneer 30G97, as well as one local maize cultivar. The total protein content was variable among the cultivars ranging from 7% for BH660 to 8.6% for Pioneer 30H83, 8.9% for BH140, 9.8% for QPM BH542, 10.1% for local maize cultivar, and 11.8% for Pioneer 30G97, respectively. However, the QPM BH542 maize protein proved to be higher in nutritional quality than common maize proteins because it contained 30% to 82% more lysine, higher levels of arginine, tryptophan, histidine, threonine, cysteine, and valine. As a result, the QPM BH542 amino acid profile gives a good balance of total essential amino acids, limited only in lysine, and has a C-PER ratio of 2.2 compared to 1.14, 1.2, 1.4, 1.66, and 1.67 for Pioneer 30G97, local, BH-140, BH660, and Pioneer 30H83, respectively. The various traditional processes of maize have no significant effect on the protein nutritional quality of the new quality protein maize. Hence, the widely dissemination of it in agricultural cultivation as well as consumption by the general population is recommended. [source] Seed-specific expression of the wheat puroindoline genes improves maize wet milling yieldsPLANT BIOTECHNOLOGY JOURNAL, Issue 8 2009Jinrui Zhang Summary The texture of maize (Zea mays L.) seeds is important to seed processing properties, and soft dent maize is preferred for both wet-milling and livestock feed applications. The puroindoline genes (Pina and Pinb) are the functional components of the wheat (Triticum aestivum L.) Hardness locus and together function to create soft grain texture in wheat. The PINs (PINA and PINB) are believed to act by binding to lipids on the surface of starch granules, preventing tight adhesion between starch granules and the surrounding protein matrix during seed maturation. Here, maize kernel structure and wet milling properties were successfully modified by the endosperm-specific expression of wheat Pins (Pina and Pinb). Pins were introduced into maize under the control of a maize ,- Zein promoter. Three Pina/Pinb expression positive transgenic lines were evaluated over two growing seasons. Textural analysis of the maize seeds indicated that the expression of PINs decreased adhesion between starch and protein matrix and reduced maize grain hardness significantly. Reduction in pressure required to fracture kernels ranged from 15.65% to 36.86% compared with control seeds. Further, the PINs transgenic maize seeds had increased levels of extractable starch as characterized by a small scale wet milling method. Starch yield was increased by 4.86% on average without negatively impacting starch purity. The development of softer maize hybrids with higher starch extractability would be of value to maize processors. [source] Nitrogen uptake and utilization efficiency of European maize hybrids developed under conditions of low and high nitrogen inputPLANT BREEDING, Issue 6 2002T. Presterl Abstract Maize varieties with improved nitrogen(N)-use efficiency under low soil N conditions can contribute to sustainable agriculture. Tests were carried to see whether selection of European elite lines at low and high N supply would result in hybrids with differential adaptation to these contrasting N conditions. The objective was to analyze whether genotypic differences in N uptake and N-utilization efficiency existed in this material and to what extent these factors contributed to adaptation to low N supply. Twenty-four hybrids developed at low N supply (L × L) were compared with 25 hybrids developed at high N supply (H × H). The N uptake was determined as total above-ground N in whole plants, and N-utilization efficiency as the ratio between grain yield and N uptake in yield trials at four locations and at three N levels each. Highly significant variations as a result of hybrids and hybrids × N-level interaction were observed for grain yield as well as for N uptake and N-utilization efficiency in both hybrid types. Average yields of the L × L hybrids were higher than those of the H × H hybrids by 11.5% at low N supply and 5.4% at medium N level. There was no significant yield difference between the two hybrid types at high N supply. The L × L hybrids showed significantly higher N uptake at the low (12%) and medium (6%) N levels than the H × H hybrids. In contrast, no differences in N-utilization efficiency were observed between the hybrid types. These results indicate that adaptation of hybrids from European elite breeding material to conditions with reduced nitrogen input was possible and was mainly the result of an increase in N-uptake efficiency. [source] Oxygen isotope enrichment (,18O) reflects yield potential and drought resistance in maizePLANT CELL & ENVIRONMENT, Issue 11 2009LLORENÇ CABRERA-BOSQUET ABSTRACT Measurement of stable isotopes in plant dry matter is a useful phenotypic tool for speeding up breeding advance in C3 crops exposed to different water regimes. However, the situation in C4 crops is far from resolved, since their photosynthetic metabolism precludes (at least in maize) the use of carbon isotope discrimination. This paper investigates the use of oxygen isotope enrichment (,18O) as a new secondary trait for yield potential and drought resistance in maize (Zea mays L). A set of tropical maize hybrids developed by the International Maize and Wheat Improvement Center was grown under three contrasting water regimes in field conditions. Water regimes clearly affected plant growth and yield. In accordance with the current theory, a decrease in water input was translated into large decreases in stomatal conductance and increases in leaf temperature together with concomitant 18O enrichment of plant matter (leaves and kernels). In addition, kernel ,18O correlated negatively with grain yield under well-watered and intermediate water stress conditions, while it correlated positively under severe water stress conditions. Therefore, genotypes showing lower kernel ,18O under well-watered and intermediate water stress had higher yields in these environments, while the opposite trend was found under severe water stress conditions. This illustrates the usefulness of ,18O for selecting the genotypes best suited to differing water conditions. [source] Chapter 6: Maize with Increased Lysine (Lysine Maize,LY038)COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, Issue 1 2008Article first published online: 30 JAN 200 ABSTRACT:, Data and information provided in this case study relate to a crop derived by modern biotechnology, in which a specific nutrient (lysine) has been increased in maize grain.Lysine maize is a feed ingredient with enhanced nutritional characteristics for poultry and swine and provides an alternative to adding supplemental lysine to diets for these animals. Lysine maize is in an advanced state of development; therefore, extensive unpublished data and information are presented to demonstrate that (1) Lysine maize,and the feeds and foods derived from it,are as safe as those derived from conventional maize,and (2) the increased lysine in Lysine maize grain produces the intended nutritional benefit for broiler chickens when compared to a diet containing conventional maize grain and a crystalline lysine supplement. These conclusions are based on a detailed molecular characterization of Lysine maize,a safety assessment of the introduced protein,a safety and nutritional assessment of the LY038 crop,and a comparison of the agronomic and phenotypic properties of maize hybrids with and without the Lysine maize trait. Although Lysine maize is a specialty crop for use in animal feed,its safety for both animals and humans must be demonstrated. Free lysine is significantly increased in Lysine maize by the introduction of the dapA gene (cordapA) from Corynebacterium glutamicum that encodes a form of dihydrodipicolinate synthase (cDHDPS) that is insensitive to lysine feedback inhibition.Analysis of lysine anabolic and catabolic pathways in maize identified 6 metabolites that might change as a consequence of the introduction of cDHDPS insensitive to lysine-feedback inhibition. The results of compositional analysis demonstrated that Lysine maize grain is comparable to conventional maize, with the exception of the intended increase in lysine and a corresponding increase in 2 products of lysine catabolism,saccha-ropine and -aminoadipic acid. Therefore, the safety and/or nutritional implication of these 3 compounds under the conditions of use were the focus of additional assessments and found to not present either a safety or nutritional problem. [source] |