Magnitude Larger (magnitude + larger)

Distribution by Scientific Domains


Selected Abstracts


Dispersion of Dust Acoustic Modes and Perturbations of Plasma Flux Balance

CONTRIBUTIONS TO PLASMA PHYSICS, Issue 3 2007
V. Tsytovich
Abstract Previous considerations of dust acoustic waves is demonstrated to be inconsistent - the required equilibrium state for perturbations was not defined since balance of plasma fluxes was neglecting. The self-consistent treatment shows that plasma flux perturbations are accompanying any collective waves propagating in dusty plasmas and can play an important role in wave dispersion, wave damping and can create instabilities. This is illustrated by the derivation of dispersion relation for dust acoustic modes taking into account the plasma flux balances and plasma flux perturbations by waves. The result of this approach shows that the dust acoustic waves with linear dependence of wave frequency on the wave number exist only in restricted range of the wave numbers. Only for wave numbers larger than some critical wave number for low frequency modes the frequency can be have approximately a linear dependence on wave number and can be called as dust acoustic wave but the phase velocity of these waves is different from that which can be obtained neglecting the flux balance and depends on grain charge variations which are determined by the balance of fluxes. The presence of plasma fluxes previously neglected is the main typical feature of dusty plasmas. The dispersion relation in the range of small wave numbers is found to be mainly determined by the change of the plasma fluxes and is quite different from that of dust acoustic type, namely it is found to have the same form as the well known dispersion relation for the gravitational instability. This result proves in general way the existence of the collective grain attractions of negatively charged grains for for large distances between them and for any source of ionization. The attraction of grains found from dispersion relation of the dust acoustic branch coincides with that found previously for pair grain interactions using some models for the ionization source. For the existing experiments the effective Jeans length for such attraction is estimated to be about 8 , 10 times larger than the ion Debye length and the effective gravitational constant for the grain attraction is estimated to be several orders of magnitude larger than the usual gravitational constant. The grain attraction at large inter-grain distances described by the gravitationlike grain instability is considered as the simplest explanation for observed dust cloud clustering, formation of dust structures including the plasma crystals. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Gross rates of ammonification and nitrification at a nitrogen-saturated spruce (Picea abies (L.)Karst.) stand in southern Germany

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 5 2010
P. Rosenkranz
We investigated the magnitudes of temporal and spatial variabilities of gross ammonification and nitrification, in an N-saturated temperate forest ecosystem. Forest soil gross ammonification, gross nitrification and heterotrophic soil respiration were measured in the forest floor and uppermost mineral layer over a period of 3 years. Total annual gross fluxes for the organic layer and uppermost mineral horizon (0,4 cm) were in the range of 800,980 kg N ha,1 year,1 for gross ammonification and 480,590 kg N ha,1 year,1 for gross nitrification. Annual heterotrophic soil respiration was 8000,8900 kg C ha,1 year,1. Highest soil C and N turnover rates occurred in summer, and a consistent pattern was observed throughout the observation period, with highest values for plots located at a clear-cut area and lowest values for plots located at an unmanaged, approximately 100-year-old, spruce control site. Soil moisture, soil temperature and substrate availability accounted for most of the observed variability of C and N turnover rates. Because gross rates of inorganic N production were more than an order of magnitude larger than ecosystem N losses along hydrological and gaseous pathways, our study underlines the importance of internal microbial N turnover processes for ecosystem N cycling and retention. [source]


Effects of Phonon Confinement on Anomalous Thermalization, Energy Transfer, and Upconversion in Ln3+ -Doped Gd2O3 Nanotubes

ADVANCED FUNCTIONAL MATERIALS, Issue 4 2010
Andreia G. Macedo
Abstract There is a growing interest in understanding how size-dependent quantum confinement affects the photoluminescence efficiency, excited-state dynamics, energy-transfer and thermalization phenomena in nanophosphors. For lanthanide (Ln3+)-doped nanocrystals, despite the localized 4f states, confinement effects are induced mostly via electron,phonon interactions. In particular, the anomalous thermalization reported so far for a handful of Ln3+ -doped nanocrystals has been rationalized by the absence of low-frequency phonon modes. This nanoconfinement may further impact on the Ln3+ luminescence dynamics, such as phonon-assisted energy transfer or upconversion processes. Here, intriguing and unprecedented anomalous thermalization in Gd2O3:Eu3+ and Gd2O3:Yb3+,Er3+ nanotubes, exhibiting up to one order of magnitude larger than previously reported for similar materials, is reported. This anomalous thermalization induces unexpected energy transfer from Eu3+C2 to S6 crystallographic sites, at 11,K, and 2H11/2,,,4I15/2 Er3+ upconversion emission; it is interpreted on the basis of the discretization of the phonon density of states, easily tuned by varying the annealing temperature (923,1123,K) in the synthesis procedure, and/or the Ln3+ concentration (0.16,6.60%). [source]


Faecal pellets in streams: their binding, breakdown and utilization

FRESHWATER BIOLOGY, Issue 10 2007
PAUL JOYCE
Summary 1. Faecal pellets of Gammarus (shredders) and Simulium larvae (suspension feeders) are bound by exopolymers. Immediately after egestion, Gammarus pellets are covered by a peritrophic membrane that breaks up within hours, although pellets remain intact because of internal binding materials. 2. Although they expand soon after egestion, the faecal pellets of Gammarus and Simulium remain intact for more than 30 days. Their internal structure is altered and the main agents of this change are bacteria that have survived passage through the gut (and become bound within pellets). 3. When disrupted physically, freshly egested (1- to 2-day old) Simulium faecal pellets break up into relatively large pieces whereas freshly egested Gammarus faecal pellets break apart into much smaller pieces. Disruption of 30-day old Simulium faecal pellets results in similar sized pieces to those from freshly egested pellets, but disruption of 30-day old Gammarus pellets produces pieces that are two orders of magnitude larger than those resulting from disruption of freshly egested pellets. 4. Faecal pellets of Gammarus and Simulium are eaten by stream invertebrates and are sites of microbial breakdown. Faecal pellets are a source of organic matter for benthic invertebrates, bacteria and, indirectly, for plants. [source]


Pan Evaporation Trends and the Terrestrial Water Balance.

GEOGRAPHY COMPASS (ELECTRONIC), Issue 2 2009

Declines in pan evaporation have been reported across the USA, former Soviet Union, India, China, Australia, New Zealand and Canada, among other places. The trend is large , approximately an order of magnitude larger than model-based estimates of top of the atmosphere radiative forcing. The pan evaporation trend also has a different sign (i.e. decline) from commonly held conceptions. These are a remarkably interesting set of observations. In the first article of this two-part series, we discussed the measurements themselves and then presented summaries of the worldwide observations. In this, the second article, we outline the use of energy balance methods to attribute the observed changes in pan evaporation to changes in the underlying physical variables, namely, radiation, temperature, vapour pressure deficit and wind speed. We find that much of the decline in pan evaporation can be attributed to declines in radiation (i.e. dimming) and/or wind speed (i.e. stilling). We then discuss the interpretation of changes in the terrestrial water balance. This has been an area of much misunderstanding and confusion, most of which can be rectified through use of the familiar and longstanding supply/demand framework. The key in using the pan evaporation data to make inferences about changes in the terrestrial water balance is to distinguish between water- and energy-limited conditions where different interpretations apply. [source]


Ritter Island Volcano,lateral collapse and the tsunami of 1888

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2003
Steven N. Ward
SUMMARY In the early morning of 1888 March 13, roughly 5 km3 of Ritter Island Volcano fell violently into the sea northeast of New Guinea. This event, the largest lateral collapse of an island volcano to be recorded in historical time, flung devastating tsunami tens of metres high on to adjacent shores. Several hundred kilometres away, observers on New Guinea chronicled 3 min period waves up to 8 m high, that lasted for as long as 3 h. These accounts represent the best available first-hand information on tsunami generated by a major volcano lateral collapse. In this article, we simulate the Ritter Island landslide as constrained by a 1985 sonar survey of its debris field and compare predicted tsunami with historical observations. The best agreement occurs for landslides travelling at 40 m s,1, but velocities up to 80 m s,1 cannot be excluded. The Ritter Island debris dropped little more than 800 m vertically and moved slowly compared with landslides that descend into deeper water. Basal friction block models predict that slides with shorter falls should attain lower peak velocities and that 40+ m s,1 is perfectly compatible with the geometry and runout extent of the Ritter Island landslide. The consensus between theory and observation for the Ritter Island waves increases our confidence in the existence of mega-tsunami produced by oceanic volcano collapses two to three orders of magnitude larger in scale. [source]


Scattering behaviour at Merapi volcano (Java) revealed from an active seismic experiment

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2001
Ulrich Wegler
SUMMARY The seismic structure of the stratovolcano Merapi (Java, Indonesia) was studied using an active seismic experiment. Three 3 km long seismic profiles each consisting of up to 30 three-component seismometers with an interstation distance of 100 m were built up in an altitude range between 1000 and 2000 m above sea level. The detailed study of the seismic properties of the propagation media in active volcanic regions is important to understand the natural seismic signals used for eruption forecasting. The seismic experiment at Merapi therefore concentrates on the heterogeneous structure within a radius of 5 km from the active dome, where the sources of most of the natural volcanic seismic events are located. The cone of Merapi volcano consists of different materials changing on a small scale due to the layering of eruptive material. Additionally, the topography of the erosion valleys leads to an irregular deposition, which cannot be described by a simple 1-D layering. These inhomogeneities have a strong influence on seismic signals. The direct P and S waves are attenuated quickly and show only small amplitudes on seismograms. The energy lost from the direct waves, however, is not changed into heat but scattered and can be observed as seismic coda following the direct waves. The observed seismograms show a spindle-like amplitude increase after the direct P phase. This shape of the envelope can be explained by the diffusion model. According to this model there are so many strong inhomogeneities that the direct wave can be neglected and all energy is concentrated in multiple scattered waves. Besides the envelope, the coherence and polarization properties of the wavefield also indicate strong scattering. Only the first onset shows coherence over a station spacing of 100 m, whereas the late phases carrying the major part of the energy are mainly incoherent. The horizontal components of the seismograms have larger amplitudes than the vertical component, but within the horizontal plane the polarization is almost arbitrary, corresponding to waves arriving from scatterers located arbitrarily in space. As a result of the inversion using the diffusion model we obtain values of the S -wave scattering attenuation coefficient, ,s, and the S -wave intrinsic absorption coefficient, ,i. In the frequency range of 4,20 Hz used in this study the scattering attenuation is at least one order of magnitude larger than the intrinsic absorption (,s,,i). The mean free path of S waves is as low as 100 m (,s,1,100 m). The scattering coefficient is independent of frequency (,s,f0.0), whereas the coefficient of intrinsic attenuation increases with increasing frequency (,i,f1.6). The natural seismic signals at Merapi volcano show similar characteristics to the artificial shots. The first onsets have only small amplitudes and the energy maximum arrives delayed compared to the direct waves. Therefore, these signals appear to be strongly affected by multiple scattering also. [source]


The effects of near-surface conditions on anisotropy parameter estimations from 4C seismic data

GEOPHYSICAL PROSPECTING, Issue 1 2006
Bärbel Traub
ABSTRACT We present a study of anisotropic parameter estimation in the near-surface layers for P-wave and converted-wave (C-wave) data. Near-surface data is affected by apparent anisotropy due to a vertical velocity compaction gradient. We have carried out a modelling study, which showed that a velocity gradient introduces apparent anisotropy into an isotropic medium. Thus, parameter estimation will give anomalous values that affect the imaging of the target area. The parameter estimation technique is also influenced by phase reversals with diminishing amplitude, leading to erroneous parameters. In a modelling study using a near-surface model, we have observed phase reversals in near-surface PP reflections. The values of the P-wave anisotropy parameter , estimated from these events are about an order of magnitude larger than the model values. Next, we use C-wave data to estimate the effect of anisotropy (,) and compute , from these values. These calculated ,-values are closer to the model values, and NMO correction with both ,-values shows a better correction for the calculated value. Hence, we believe that calculating , from , gives a better representation of the anisotropy than picked , from the P-wave. Finally, we extract the anisotropy parameters , and , from real data from the Alba Field in the North Sea. Comparing the results with reference values from a model built according to well-log, VSP and surface data, we find that the parameters show differences of up to an order of magnitude. The ,-values calculated from the C-wave anisotropy parameter , fit the reference values much better and show values of the same order of magnitude. [source]


Threshold Voltage Shifts in Organic Thin-Film Transistors Due to Self-Assembled Monolayers at the Dielectric Surface

ADVANCED FUNCTIONAL MATERIALS, Issue 6 2009
Stefan K. Possanner
Abstract Recently, it has been shown by several groups that the electrical characteristics of organic thin-film transistors (OTFTs) can be significantly influenced by depositing self-assembled monolayers (SAMs) at the organic semiconductor/dielectric interface. In this work, the effect of such SAMs on the transfer characteristics and especially on the threshold voltage of OTFTs is investigated by means of two-dimensional drift-diffusion simulations. The impact of the SAM is modeled either by a permanent space charge layer that can result from chemical reactions with the active material, or by a dipole layer representing an array of ordered dipolar molecules. It is demonstrated that, in both model cases, the presence of the SAM significantly changes the transfer characteristics. In particular, it gives rise to a modified, effective gate voltage Veff that results in a rigid shift of the threshold voltage, ,Vth, relative to a SAM-free OTFT. The achievable amount of threshold voltage shift, however, strongly depends on the actual role of the SAM. While for the investigated device dimensions, an organic SAM acting as a dipole layer can realistically shift the threshold voltage only by a few volts, the changes in the threshold voltage can be more than an order of magnitude larger when the SAM leads to charges at the interface. Based on the analysis of the different cases, a route to experimentally discriminate between SAM-induced space charges and interface dipoles is proposed. The developed model allows for qualitative description of the behavior of organic transistors containing reactive interfacial layers; when incorporating rechargeable carrier trap states and a carrier density-dependent mobility, even a quantitative agreement between theory and recent experiments can be achieved. [source]


Polyimide Orientation Layers Prepared from Lyotropic Aromatic Poly(Amic Ethyl Ester)s,

ADVANCED FUNCTIONAL MATERIALS, Issue 5 2003
C. Neuber
Abstract The synthesis and characterization of liquid-crystalline precursor polymer solutions[1] for polyimides permit for the first time the preparation of bulk- and surface-oriented polyimide thin films from the nematic lyotropic state by shear. A special shearing technique was developed and optimized to orient viscous solutions into thin films with thicknesses below 100 nm. The films produced were thermally imidized and characterized by polarized light microscopy, as well as polarized FTIR and UV-vis spectroscopy before and after imidization. The dichroic ratios (DRs) before imidization were determined as 5 by FTIR, and 4.5 by UV-vis spectroscopies. After imidization the DRs increased to 14 and 7, respectively. The shear-oriented layers possess a surface profile in the form of striations, which was characterized by mechanical surface scanning and atomic force microscopy (AFM). The profile height was determined in the nanometer range in contrast to the profile distance in the micrometer range, thus the latter is a magnitude larger than the film thickness. To quantify and compare the orientation potential of the obtained orientation layers, cells with a liquid-crystalline host and a dichroic azo dye as guest were prepared. Interesting for this class of rod-like polyimides is that layers, which were cast from low concentration isotropic solutions and rubbed, exhibited an almost doubled DR of 15 compared to analogously prepared alignment layers based on commercial flexible polyimide systems (DR,=,8). [source]


X-ray computed tomography of peat soils: measuring gas content and peat structure

HYDROLOGICAL PROCESSES, Issue 25 2008
Nicholas Kettridge
Abstract The potential of using X-ray computed tomography (CT) to (i) analyse individual biogenic gas bubbles entrapped within peats and (ii) produce reliable descriptors of peat structure is examined. Existing approaches used to study biogenic gas bubbles measure the gas content of volumes of peat many orders of magnitude larger than most bubbles, and are, therefore, of little use in helping to understand bubble dynamics. In many peatland studies, the description of peat structures is derived from only a few relatively basic metrics; principally the porosity, the bulk density, and the von Post humification scale. CT is applied to identify and quantitatively analyse the size, location and shape of individual gas bubbles entrapped during the saturation of a 200 cm3 sample of S. fuscum. 3421 gas bubbles were identified, ranging in size from 0·1 mm3 to 99·9 mm3. These gas bubbles were non-randomly distributed, clustered predominantly in the vertical plane. When analysing the peat structure, Sphagnum peat and water are shown to be indistinguishable within CT scans. Peat samples were therefore prepared prior to scanning by flushing the peat with lead (II) nitrate solution to increase the linear attenuation of the Sphagnum. Sphagnum stems and branches were analysed, producing metrics of the peat structure; including stem and branch lengths, radii and orientation. In a 100 cm3 sample of S. magellanicum, the length of all Sphagnum stems totalled 1·82 m, with an average radius of 0·65 mm. The Sphagnum stems and branches were both preferentially orientated in the horizontal direction. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Efficiency of boundary element methods for time-dependent convective heat diffusion at high Peclet numbers

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 4 2005
M. M. Grigoriev
Abstract A higher-order boundary element method (BEM) recently developed by the current authors (Comput Methods Appl Mech Eng 2003; 192: 4281,4298; 4299,4312; 4313,4335) for time-dependent convective heat diffusion in two-dimensions appears to be a very attractive tool for efficient simulations of transient linear flows. However, the previous BEM formulation is restricted to relatively small time step sizes (i.e. ,t,4,/V2) owing to the convergence issues of the time series for the kernel representation within a time interval. This paper extends the boundary element formulation in a way to allow time step sizes several orders of magnitude larger than in the previous approach. We consider an example problem of thermal propagation, and investigate the accuracy and efficiency of BEM formulations for Peclet numbers in the range from 103 to 105. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Control of near-grazing dynamics and discontinuity-induced bifurcations in piecewise-smooth dynamical systems

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 16 2010
Sambit Misra
Abstract This paper develops a rigorous control paradigm for regulating the near-grazing bifurcation behavior of limit cycles in piecewise-smooth dynamical systems. In particular, it is shown that a discrete-in-time linear feedback correction to a parameter governing a state-space discontinuity surface can suppress discontinuity-induced fold bifurcations of limit cycles that achieve near-tangential intersections with the discontinuity surface. The methodology ensures a persistent branch of limit cycles over an interval of parameter values near the critical condition of tangential contact that is an order of magnitude larger than that in the absence of control. The theoretical treatment is illustrated with a harmonically excited damped harmonic oscillator with a piecewise-linear spring stiffness as well as with a piecewise-nonlinear model of a capacitively excited mechanical oscillator. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web

JOURNAL OF ANIMAL ECOLOGY, Issue 1 2000
J. Memmott
Summary 1.,A food web is presented which describes trophic interactions among the herbivores, parasitoids, predators and pathogens associated with broom, Cytisus scoparius (L.) Link. The data come from published work on the community at a single site. The web comprises a total of 154 taxa: one plant, 19 herbivores, 66 parasitoids, 60 predators, five omnivores and three pathogens. There are 370 trophic links between these taxa in the web. The taxa form 82 functionally distinct groups, called trophic species. 2.,Predators consumed significantly more species than did parasitoids: a median of two prey species per species of predator (range = 1,9), compared to a median of one host species per species of parasitoid (range = 1,4). Significant differences in the number of species consumed were also found among the five predator groups: birds (median = 4), spiders (median = 5), Coleoptera (median = 1), Diptera (median = 2) and Hemiptera (median = 7). 3.,Vulnerability, measured by numbers of consumer species, was significantly affected by the herbivores' feeding styles: externally feeding herbivores were most vulnerable and the concealed herbivores were least vulnerable. Miners were vulnerable to the most parasitoid species and externally feeding herbivores were the most vulnerable to predators. 4.,Resource species had a median vulnerability of 13 consumer species, a figure far higher than that in most published food webs. No significant relationship was found between species' vulnerability to predators and vulnerability to parasitoids. However, there was a strong negative relationship between the percentage mortality due to predation and percentage mortality due to parasitism. 5.,The broom food web contains nine orders of insects, a figure higher than previously recorded. The web also contains vertebrates, arachnids, bacteria and fungi. Most of the interactions between the orders were weak. Connectance was calculated for the complete web, the parasitoid sub-web and the predator sub-web. The connectance of the predator sub-web, a value of 0·0364, was more than an order of magnitude larger than the connectance of the entire web (0·0156) or the parasitoid sub-web (0·018). 6.,The body lengths of 52 species in the food web were estimated from field guides or museum specimens. Larger predators consumed smaller prey in 93% of predator,prey interactions. Smaller parasitoids consumed larger hosts in 79% of parasitoid,host interactions. Parasitoids were significantly smaller than predators. 7.,The 52 species were arranged in order of increasing body length along the columns and down the rows of a food web matrix. The predator sub-web was predominantly upper triangular with 8% of non-zero elements falling below the leading diagonal. The parasitoid sub-web was predominantly lower triangular with 21% non-zero elements falling above the leading diagonal. The entire web contains entries both above and below the main diagonal and thus violates a central assumption of the cascade model. [source]


Diffusion-controlled growth of wollastonite rims between quartz and calcite: comparison between nature and experiment

JOURNAL OF METAMORPHIC GEOLOGY, Issue 5 2002
R. Milke
Abstract Growth rates of wollastonite reaction rims between quartz and calcite were experimentally determined at 0.1 and 1 GPa and temperatures from 850 to 1200 °C. Rim growth follows a parabolic rate law indicating that this reaction is diffusion-controlled. From the rate constants, the D,,-values of the rate-limiting species were derived, i.e. the product of grain boundary diffusion coefficient D, and the effective grain boundary width, ,. In dry runs at 0.1 GPa, wollastonite grew exclusively on quartz surfaces. From volume considerations it is inferred that (D,CaO,)/(D,SiO2,),1.33, and that SiO2 diffusion controls rim growth. D,SiO2, increases from about 10,25 to 10,23 m3 s,1 as temperature increases from 850 to 1000 °C, yielding an apparent activation energy of 330±36 kJ mol,1. In runs at 1 GPa, performed in a piston-cylinder apparatus, there were always small amounts of water present. Here, wollastonite rims always overgrew calcite. Rims around calcite grains in quartz matrix are porous and their growth rates are controlled by a complex diffusion-advection mechanism. Rim growth on matrix calcite around quartz grains is controlled by grain boundary diffusion, but it is not clear whether CaO or SiO2 diffusion is rate-limiting. D,, increases from about 10,21 to 10,20 m3 s,1 as temperature increases from 1100 to 1200 °C. D,SiO2, or D,CaO, in rims on calcite is c. 10 times larger than D,SiO2, in dry rims at the same temperature. Growth structures of the experimentally produced rims are very similar to contact-metamorphic wollastonite rims between metachert bands and limestone in the Bufa del Diente aureole, Mexico, whereby noninfiltrated metacherts correspond to dry and brine-infiltrated metacherts to water-bearing experiments. However, the observed diffusivities were 4 to 5 orders of magnitude larger during contact-metamorphism as compared to our experimental results. [source]


Rapid lightoff of syngas production from methane: A transient product analysis

AICHE JOURNAL, Issue 1 2005
Kenneth A. Williams
Abstract Steady-state production of syngas (CO and H2) can be attained within 10 s from room-temperature mixtures of methane and air fed to a short-contact-time reactor by initially operating at combustion stoichiometry (CH4/O2 = 0.5) and then quickly switching to syngas stoichiometry (CH4/O2 = 2.0). The methane/air mixture is first ignited, forming a premixed flame upstream of the catalyst that heats the Rh-impregnated ,-alumina foam monolith to catalytic lightoff (T > 500°C) in a few seconds. The methane/oxygen ratio is then increased to partial oxidation stoichiometry, which extinguishes the flame and effects immediate autothermal syngas production. Transient species profiles are measured with a rapid-response mass spectrometer (response time constant , 0.5 s), and catalyst temperature is measured with a thermocouple at the catalyst back face. Because the monolith thermal response time (, 1 s) is several orders of magnitude larger than the reaction timescales (, 10,12 to 10,3 s), chemistry and flow should be mathematically decoupled from local transient variations in catalyst temperature. Using this assumption, a transient temperature profile is combined with detailed surface chemistry for methane on Rh in a numerical plug-flow model. This approach accurately reproduces the transient species profiles measured during experimental lightoff for short combustion time experiments and lends insight into how the monolith temperature develops with time. The combined experimental and numerical efforts supply useful information on the transient reactor behavior for various combustion times and identify a combustion time to avoid undershoot or overshoot in catalyst temperature and minimize start-up time. © 2004 American Institute of Chemical Engineers AIChE J, 51: 247,260, 2005 [source]


Population Dynamics of Pseudomonas syringae pv. tomato Strains on Tomato Cultivars Rio Grande and Rio Grande- Pto under Field Conditions

JOURNAL OF PHYTOPATHOLOGY, Issue 4 2009
David K. Willis
Abstract We examined the effects of the Pto resistance locus on the population dynamics of Pseudomonas syringae pv. tomato (Pst) strains in field experiments with the nearly isogenic tomato lines Rio Grande (RG, susceptible to Pst races 0 and 1) and Rio Grande-Pto (RG-Pto, resistant to Pst race 0, susceptible to Pst race 1). Pst strain SM78-1Smr (race 0) grew well under field conditions and caused ample bacterial speck disease on susceptible RG plants. In contrast, strain DC3000 failed to establish large populations when inoculated onto field grown RG plants. Mean population sizes of SM78-1Smr were 4,5 orders of magnitude larger on RG than RG-Pto plants indicating that RG-Pto plants were highly effective in attenuating pathogen population development. Most of the sampled leaflets from RG-Pto field plots harboured small numbers of SM78-1Smr. However, population sizes SM78-1Smr as large as 105,106 CFU were found on a few leaflets. Bacteria isolated from these leaflets had phenotypes characteristic of Pst race 1 strains. In growth chamber plant assays, the bacterial strains grew well and caused typical speck lesions on RG-Pto plants. The strains appeared to be race-shift mutants of SM SM78-1Smr. Interestingly, results from DNA hybridization experiments demonstrated that the race-shift mutants were deleted for the avirulence gene, avrPto but not for avrPtoB. [source]


Energy Transfer Process for the Blue Up-Conversion in Calcium Aluminate Glasses Doped with Tm3+ and Nd3+

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2001
Woon Jin Chung
Excitation of Tm3+ to 3H4 using the 791 nm pump source showed the frequency up-converted blue emission (,480 nm) due to the Tm3+:1G4,3H6 transition in Tm3+/Nd3+ codoped CaO·Al2O3 glasses. Intensity and lifetime changes with rare-earth concentrations suggested the efficient energy transfer of Tm3+:3H4, Nd3+:4F5/2 and Nd3+:4F3/2, Tm3+:1G4. The latter transfer enabled Tm3+ to reach its 1G4 level, and the blue emission became possible through the 1G4,3H6 transition. Quantitative analysis with rate equations proved that these two transitions were the most efficient among all the possible energy transfer routes between Tm3+ and Nd3+. Calculated up-conversion efficiency of the Tm3+/Nd3+ combination in CaO·Al2O3 glass was 6.6 × 10,3, and it was ,4 orders of magnitude larger than those reported for other oxide glasses. [source]


The Free Volume and Its Recovery in Pressure-Densified and CO2 -Swollen Heterocyclic-Ring-Containing Fluoropolymers

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 18 2008
Günter Dlubek
Abstract Changes in the free volume in CYTOP due to pressure densification and swelling with CO2 have been examined using PALS and PVT experiments. Employing the Simha-Somcynsky equation of state the specific hole free, Vf, and occupied, Vocc, volumes were estimated. The change in the total volume due to the pre-treatments occurs exclusively in the hole free volume and the relative change in Vf is one order of magnitude larger than in the total volume. Vocc shows no memory for the history of the polymer glass. The mean and width of the size distribution of subnanometre holes in the glassy state decrease upon densification and increase upon swelling. The volume changes which are frozen in the polymer glass begin to recover at temperatures distinctly below Tg. [source]


Impactites as a random medium,Using variations in physical properties to assess heterogeneity within the Bosumtwi meteorite impact crater

METEORITICS & PLANETARY SCIENCE, Issue 4-5 2007
Elizabeth L'HEUREUX
The damage induced by impact results in extensive fracturing and mixing of target materials. We discuss here a means of using sonic velocity and density logs from two boreholes through the Bosumtwi crater fill and basement to estimate the degree of heterogeneity and fracturing within the impacted target, in order to understand the discrepancy between the large impedances derived from the log data and the nonreflective zone of impactites observed in seismic sections. Based on an analysis of the stochastic fluctuations in the log data, the Bosumtwi impactites are characterized by vertical scale lengths of 2,3 m. From the resolution of the seismic data over the crater, horizontal scale lengths are estimated at <12 m. The impactites therefore fall within the quasi-homogeneous scattering regime, i.e., seismic energy will propagate through the medium with little disruption. Scale lengths as small as these are observed in the fractured basement rocks of impact structures, whereas non-impact related crystalline environments are characterized by scale lengths an order of magnitude larger. Assuming that the high-frequency fluctuations observed in the log data are more sensitive to fracture distribution than petrology, this suggests that the small scale lengths observed within impact structures are characteristic of impact-induced damage, and could be used to estimate the extent of fracturing undergone by the rocks at any depth below an impact structure. [source]


FAST-TRACK: A southern California freeway is a physical and social barrier to gene flow in carnivores

MOLECULAR ECOLOGY, Issue 7 2006
SETH P. D. RILEY
Abstract Roads present formidable barriers to dispersal. We examine movements of two highly mobile carnivores across the Ventura Freeway near Los Angeles, one of the busiest highways in the United States. The two species, bobcats and coyotes, can disappear from habitats isolated and fragmented by roads, and their ability to disperse across the Ventura Freeway tests the limits of vertebrates to overcome anthropogenic obstacles. We combine radio-telemetry data and genetically based assignments to identify individuals that have crossed the freeway. Although the freeway is a significant barrier to dispersal, we find that carnivores can cross the freeway and that 5,32% of sampled carnivores crossed over a 7-year period. However, despite moderate levels of migration, populations on either side of the freeway are genetically differentiated, and coalescent modelling shows their genetic isolation is consistent with a migration fraction less than 0.5% per generation. These results imply that individuals that cross the freeway rarely reproduce. Highways and development impose artificial home range boundaries on territorial and reproductive individuals and hence decrease genetically effective migration. Further, territory pile-up at freeway boundaries may decrease reproductive opportunities for dispersing individuals that do manage to cross. Consequently, freeways are filters favouring dispersing individuals that add to the migration rate but little to gene flow. Our results demonstrate that freeways can restrict gene flow even in wide-ranging species and suggest that for territorial animals, migration levels across anthropogenic barriers need to be an order of magnitude larger than commonly assumed to counteract genetic differentiation. [source]


Huge populations and old species of Costa Rican and Panamanian dirt frogs inferred from mitochondrial and nuclear gene sequences

MOLECULAR ECOLOGY, Issue 10 2003
A. J. Crawford
Abstract Molecular genetic data were used to investigate population sizes and ages of Eleutherodactylus (Anura: Leptodactylidae), a species-rich group of small leaf-litter frogs endemic to Central America. Population genetic structure and divergence was investigated for four closely related species surveyed across nine localities in Costa Rica and Panama. DNA sequence data were collected from a mitochondrial gene (ND2) and a nuclear gene (c- myc). Phylogenetic analyses yielded concordant results between loci, with reciprocal monophyly of mitochondrial DNA haplotypes for all species and of c- myc haplotypes for three of the four species. Estimates of genetic differentiation among populations (FST) based upon mitochondrial data were always higher than nuclear-based FST estimates, even after correcting for the expected fourfold lower effective population size (Ne) of the mitochondrial genome. Comparing within-population variation and the relative mutation rates of the two genes revealed that the Ne of the mitochondrial genome was 15-fold lower than the estimate of the nuclear genome based on c- myc. Nuclear FST estimates were , 0 for the most proximal pairs of populations, but ranged from 0.5 to 1.0 for all other pairs, even within the same nominal species. The nuclear locus yielded estimates of Ne within localities on the order of 105. This value is two to three orders of magnitude larger than any previous Ne estimate from frogs, but is nonetheless consistent with published demographic data. Applying a molecular clock model suggested that morphologically indistinguishable populations within one species may be 107 years old. These results demonstrate that even a geologically young and dynamic region of the tropics can support very old lineages that harbour great levels of genetic diversity within populations. The association of high nucleotide diversity within populations, large divergence between populations, and high species diversity is also discussed in light of neutral community models. [source]


Mountains on neutron stars: accreted versus non-accreted crusts

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
B. Haskell
ABSTRACT The aim of this paper is to compare the two cases of an isolated neutron star, with a non-accreted crust, and that of an accreting neutron star, with an accreted crust, and try to estimate which one of the two would make a better source of gravitational waves. In order to do this, we must evaluate the maximum ,mountain' that the crust can sustain in these two cases. We first do this using the formalism of Ushomirsky, Cutler & Bildsten and find that the maximum quadrupole is very similar in the two cases, with the non-accreted crust sustaining a slightly larger mountain. We then develop a perturbation formalism for the problem, that allows us to drop the Cowling approximation and have more control over the boundaries. The use of this formalism confirms that there is not much difference between the two cases, but leads to results approximately one order of magnitude larger than those we obtain with the formalism of Ushomirsky et al. [source]


Velocity dispersions of dwarf spheroidal galaxies: dark matter versus MOND

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2001
Ewa L.
We present predictions for the line-of-sight velocity dispersion profiles of dwarf spheroidal galaxies and compare them to observations in the case of the Fornax dwarf. The predictions are made in the framework of standard dynamical theory of spherical systems with different velocity distributions. The stars are assumed to be distributed according to Sérsic laws with parameters fitted to observations. We compare predictions obtained assuming the presence of dark matter haloes (with density profiles adopted from N -body simulations) with those resulting from Modified Newtonian Dynamics (MOND). If the anisotropy of velocity distribution is treated as a free parameter, observational data for Fornax are reproduced equally well by models with dark matter and with MOND. If stellar mass-to-light ratio of 1 M,/L, is assumed, the required mass of the dark halo is , two orders of magnitude larger than the mass in stars. The derived MOND acceleration scale is . In both cases a certain amount of tangential anisotropy in the velocity distribution is needed to reproduce the shape of the velocity dispersion profile in Fornax. [source]


Enhancement in ellipsometric thin film sensitivity near surface plasmon resonance conditions

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 4 2008
H. Arwin
Abstract Ellipsometry used in internal reflection mode exhibits enhanced thin film sensitivity if operated close to surface plasmon resonance conditions. Compared to conventional ellipsometry, the changes in the ellipsometric parameter , are several orders of magnitude larger. Here, the origin of this large sensitivity is discussed by analysing thin film approximations of the complex reflectance ratio. It is found that the thickness sensitivity in , is proportional to the inverse of the difference between the intrinsic and the radiation-induced damping of the surface plasmons. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Synchronization of strongly interacting overdamped Josephson junctions

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 6 2005
Alexander Grib
Abstract The high frequency approximation is applied for the description of phase locking in the chain of two junctions loaded by the arbitrary resonance system providing strong coupling. The derived equation of synchronization describes phase locking for junctions which McCumber parameters of an order of magnitude larger than those described in ranges of the slowly varying amplitude approximation. The developed method is applied to the chain of junctions loaded by a resonant transmission line. Obtained values of the voltage locking interval and the maximal tolerant spread of critical currents are in agreement with numerical calculations. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Homogeneous and inhomogeneous linewidth broadening of single polar GaN/AlN quantum dots

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue S2 2009
F. Demangeot
Abstract We report on the dependence on temperature of the homogeneous and inhomogeneous broadening of the fundamental transition of single polar GaN/AlN quantum dots (QDs). Stranski-Krastanov QDs have been grown by molecular beam epitaxy using NH3 as a nitrogen source, with a very low surface density. Low temperature (LT) microphotoluminescence measurements have been performed on 200 nm wide mesas in order to isolate the luminescence of single QDs. The linewidth is found to vary from 590 ,eV at 4 K up to 1350 ,eV at 65 K in a dot of 6 monolayer height. Though the LT linewidth is still dominated by spectral diffusion, the temperature dependent broadening up to 50 K is mainly accounted for by interactions between excitons and acoustic phonons through a coupling coefficient value nearly two orders of magnitude larger than its counterpart in InAs QDs. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 629 2007
M. V. Ramana
Abstract This paper reports unique measurements of albedo, atmospheric solar absorption, and heating rates in the visible (0.4 to 0.7 µm) and broadband (0.3 to 2.8 µm) spectral regions using vertically stacked multiple lightweight autonomous unmanned aerial vehicles (UAVs). The most significant finding of this study is that when absorbing aerosols and water vapour concentrations are measured accurately and accounted for in models, and when heating rates are measured directly with stacked aircraft, the simulated clear sky heating rates are consistent with the observed broadband heating rates within experimental errors (about 15%). We conclude that there is no need to invoke anomalous or excess absorption or unknown physics in clear skies. Aerosol,radiation,cloud measurements were made over the tropical Indian Ocean within the lowest 3 km of the atmosphere during the Maldives Autonomous UAV Campaign (MAC). The UAVs and ground-based remote sensing instruments determined most of the parameters required for calculating the albedo and vertical distribution of solar fluxes. The paper provides a refined analytical procedure to reduce errors and biases due to the offset errors arising from mounting of the radiometers on the aircraft and due to the aircraft attitude. Measured fluxes have been compared with those derived from a Monte-Carlo radiative transfer algorithm which can incorporate both gaseous and aerosol components. Under cloud-free conditions the calculated and measured incoming fluxes agree within 2,10 W m,2 (<1%) depending upon the altitudes. Similarly, the measured and calculated reflected fluxes agreed within 2,5 W m,2 (<5%). The analysis focuses on a cloud-free day when the air was polluted due to long-range transport from India, and the mean aerosol optical depth (AOD) was 0.31 and mean single scattering albedo was 0.92. The UAV-measured absorption AOD was 0.019 which agreed within 20% of the value of 0.024 reported by a ground-based instrument. The observed and simulated solar absorption agreed within 5% above 1.0 km and aerosol absorption accounted for 30% to 50% of the absorption depending upon the altitude and solar zenith angle. Thus there was no need to invoke spurious or anomalous absorption, provided we accounted for aerosol black carbon. The diurnal mean absorption values for altitudes between 0.5 and 3.0 km above mean sea level were observed to be 41 ± 3 W m,2 (1.5 K/day) in the broadband region and 8 ± 2 W m,2 (0.3 K/day) in the visible region. The contribution of absorbing aerosols to the heating rate was an order of magnitude larger than the contribution of CO2 and one-third that of the water vapour. In the lowest 3 km of the tropical atmosphere, aerosols accounted for more than 80% of the atmospheric absorption in the visible region. Copyright © 2007 Royal Meteorological Society [source]


Morphological convergence of pharyngeal jaw structure in durophagous perciform fish

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2003
JUSTIN GRUBICH
This study investigated the ecomorphology of pharyngeal jaw structure and durophagy in three families of marine teleosts: the Sciaenidae, Haemulidae and Carangidae. Regressions of the bone and muscle mass of pharyngeal jaws were generated to elucidate the differences associated with eating hard-bodied and soft-bodied prey; within-family comparisons revealed significant differences in masses of bones and muscles involved with processing the former. Generally, the durophagous species ,Trachinotus carolinus (Carangidae), Pogonias cromis (Sciaenidae) and Anisotremus surinamensis (Haemulidae) , had heavier and stronger pharyngeal toothplates and larger protractor pectoralis muscles, with masses of these musculoskeletal elements ranging from five times to nearly an order of magnitude larger than those of their soft-prey feeding relatives. Pogonias cromis and T. carolinus demonstrate convergence in the ontogeny and morphological modification of the pharyngeal toothplates and protractor pectoralis muscles that enhance crushing ability. In the Haemulidae, moderate size increases in a few pharyngeal jaw elements (and larger overall body size in A. surinamensis) are sufficient for durophagy. Morphospace analysis of six species from the three families illustrates the strong functional association between the biomechanical properties of prey and the relative sizes of biting and transport mechanisms. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 80, 147,165. [source]


Binuclear Terbium(III) Complex as a Probe for Tyrosine Phosphorylation

CHEMISTRY - A EUROPEAN JOURNAL, Issue 17 2010
Hiroki Akiba
Abstract By using the luminescence from binuclear complexes of TbIII (Tb2 -L1 and Tb2 -L2), phosphorylated Tyr residue in peptides was selectively detected in neutral aqueous solutions. Neither the non-phosphorylated Tyr, pSer, pThr, nor the other phosphate-containing biomolecules tested affected the luminescence intensity to any notable extent. Upon the binding of the pTyr to these TbIII complexes, the luminescence from the metal ion was notably promoted, as the light energy absorbed by the benzene ring of pTyr is efficiently transferred to the TbIII center. The binding activity of the binuclear TbIII complexes towards pTyr is two orders of magnitude larger than that of the corresponding mononuclear complex. These binuclear complexes were successfully used for real-time monitoring of enzymatic phosphorylation of a peptide by a tyrosine kinase. [source]