Magnitude Faster (magnitude + faster)

Distribution by Scientific Domains


Selected Abstracts


Fast and Scalable CPU/GPU Collision Detection for Rigid and Deformable Surfaces

COMPUTER GRAPHICS FORUM, Issue 5 2010
Simon Pabst
Abstract We present a new hybrid CPU/GPU collision detection technique for rigid and deformable objects based on spatial subdivision. Our approach efficiently exploits the massive computational capabilities of modern CPUs and GPUs commonly found in off-the-shelf computer systems. The algorithm is specifically tailored to be highly scalable on both the CPU and the GPU sides. We can compute discrete and continuous external and self-collisions of non-penetrating rigid and deformable objects consisting of many tens of thousands of triangles in a few milliseconds on a modern PC. Our approach is orders of magnitude faster than earlier CPU-based approaches and up to twice as fast as the most recent GPU-based techniques. [source]


Real-Time Temporal-Coherent Color Contrast Enhancement for Dichromats

COMPUTER GRAPHICS FORUM, Issue 3 2010
Gustavo M. Machado
Abstract We present an automatic image-recoloring technique for enhancing color contrast for dichromats whose computational cost varies linearly with the number of input pixels. Our approach can be efficiently implemented on GPUs, and we show that for typical image sizes it is up to two orders of magnitude faster than the current state-of-the-art technique. Unlike previous approaches, ours preserve temporal coherence and, therefore, is suitable for video recoloring. We demonstrate the effectiveness of our technique by integrating it into a visualization system and showing, for the first time, real-time high-quality recolored visualizations for dichromats. [source]


Fast Inverse Reflector Design (FIRD)

COMPUTER GRAPHICS FORUM, Issue 8 2009
A. Mas
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling , Physically based modeling; I.3.1 [Hardware architecture]: Graphics processors Abstract This paper presents a new inverse reflector design method using a GPU-based computation of outgoing light distribution from reflectors. We propose a fast method to obtain the outgoing light distribution of a parametrized reflector, and then compare it with the desired illumination. The new method works completely in the GPU. We trace millions of rays using a hierarchical height-field representation of the reflector. Multiple reflections are taken into account. The parameters that define the reflector shape are optimized in an iterative procedure in order for the resulting light distribution to be as close as possible to the desired, user-provided one. We show that our method can calculate reflector lighting at least one order of magnitude faster than previous methods, even with millions of rays, complex geometries and light sources. [source]


Rapid crystal growth without inherent supersaturation induced by nanoscale fluid flows?

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 1 2006
M. J. Jones
Abstract Crystal growth is a process that only takes place under non-equilibrium conditions and a necessary prerequisite is that the crystal is exposed to a phase that is supersaturated in the material the crystal is composed of, be it a solution, a vapour or a supercooled melt. In industrial mass crystallization the growth rate for a population of crystals (in suspension growth processes [1]) rarely exceeds mean linear velocities of 10 -7 ms -1. Here we present a mass crystallization process which is accompanied by rapid crystal growth several orders of magnitude faster and into a region of solution that is without inherent supersaturation. The material investigated is a solid hydrate that exhibits a solution mediated phase transition to its anhydrous form in the presence of methanol [2]. The phase transition is initiated simply by placing an amount of hydrate crystals into the solvent and is characterized by the rapid emergence of needle-shaped crystals. The needles emanate from the crystal faces of the hydrate crystals and grow into the solution, which is nominally free of the substance to be crystallized. The high growth rate of the crystals, which of the order of up to 10 -4 ms -1 is surprising. Although rapid needle growth has been observed before [3-9], to date a satisfactory explanation for needles growing under the abovementioned conditions is still outstanding. Based upon the topology of the crystals we propose a tentative mechanism for this phenomenon capable of explaining the unusually rapid growth and highlight those questions that need addressing in order to verify this mechanism. X-ray powder diffraction is used to characterize the crystal phase of the needles; confocal fluorescence microscopy reveals that the needles are hollow. The width of these needles is between 0.5 and 5 ,m, their length appears to be limited only by the amount of hydrate available for their formation. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


DOMESTICATION OF MAIZE, SORGHUM, AND SUGARCANE DID NOT DRIVE THE DIVERGENCE OF THEIR SMUT PATHOGENS

EVOLUTION, Issue 2 2007
Andrew B. Munkacsi
We investigated two alternative hypotheses for the origin of crop pathogen species: that human-mediated agricultural practices drove the divergence of many crop plant pathogen species or that coevolutionary processes in natural populations of the crops' ancestors drove divergence of pathogen species. We distinguished between these two hypotheses by constructing a robust multigene phylogeny and estimating the dates of divergence among four, monophyletic species of smut fungi (Ustilago maydis, U. scitaminea, Sporisorium reilianum, S. sorghi) known to specifically infect maize, sorghum, sugarcane, and their wild ancestors. Without a fossil record for smut fungi, we calibrated the pathogen species' divergence times to their plant host divergence times. Specifically, a calibration date of 10,000 years was employed to test the hypothesis that the fungal species originated at the time of domestication of their current hosts and a calibration date of 50 million years was employed to test the hypothesis that the fungal species originated on wild ancestors of their domesticated hosts. Substitution rates at five protein coding genes were calculated and rates obtained for the 10,000 year calibration date were orders of magnitude faster than those commonly reported for eukaryotes, thus rejecting the hypothesis that these smut pathogen species diverged at the time of domestication. In contrast, substitution rates obtained for the 50 million year calibration were comparable to eukaryotic substitution rates. We used the 50 million year calibration to estimate divergence times of taxa in two datasets, one comprised solely the focal species and one comprised the focal species and additional related taxa. Both datasets indicate that all taxa diverged millions of years ago, strongly supporting the hypothesis that smut species diverged before the time of domestication and modern agriculture. Thus, smut species diverged in the ecological context of natural host plant and fungal populations. [source]


3D resistivity inversion using 2D measurements of the electric field

GEOPHYSICAL PROSPECTING, Issue 1 2001
P.D. Jackson
Field and ,noisy' synthetic measurements of electric-field components have been inverted into 3D resistivities by smoothness-constrained inversion. Values of electrical field can incorporate changes in polarity of the measured potential differences seen when 2D electrode arrays are used with heterogeneous ,geology', without utilizing negative apparent resistivities or singular geometrical factors. Using both the X - and Y -components of the electric field as measurements resulted in faster convergence of the smoothness-constrained inversion compared with using one component alone. Geological structure and resistivity were reconstructed as well as, or better than, comparable published examples based on traditional measurement types. A 2D electrode grid (20 × 10), incorporating 12 current-source electrodes, was used for both the practical and numerical experiments; this resulted in 366 measurements being made for each current-electrode configuration. Consequently, when using this array for practical field surveys, 366 measurements could be acquired simultaneously, making the upper limit on the speed of acquisition an order of magnitude faster than a comparable conventional pole,dipole survey. Other practical advantages accrue from the closely spaced potential dipoles being insensitive to common-mode noise (e.g. telluric) and only 7% of the electrodes (i.e. those used as current sources) being susceptible to recently reported electrode charge-up effects. [source]


Marine range shifts and species introductions: comparative spread rates and community impacts

GLOBAL ECOLOGY, Issue 3 2010
Cascade J. B. Sorte
ABSTRACT Aim, Shifts in species ranges are a predicted and realized effect of global climate change; however, few studies have addressed the rates and consequence of such shifts, particularly in marine systems. Given ecological similarities between shifting and introduced species, we examined how our understanding of range shifts may be informed by the more established study of non-native species introductions. Location, Marine systems world-wide. Methods, Database and citation searches were used to identify 129 marine species experiencing range shifts and to determine spread rates and impacts on recipient communities. Analyses of spread rates were based on studies for which post-establishment spread was reported in linear distance. The sizes of the effects of community impacts of shifting species were compared with those of functionally similar introduced species having ecologically similar impacts. Results, Our review and meta-analyses revealed that: (1) 75% of the range shifts found through the database search were in the poleward direction, consistent with climate change scenarios, (2) spread rates of range shifts were lower than those of introductions, (3) shifting species spread over an order of magnitude faster in marine than in terrestrial systems, and (4) directions of community effects were largely negative and magnitudes were often similar for shifters and introduced species; however, this comparison was limited by few data for range-shifting species. Main conclusions, Although marine range shifts are likely to proceed more slowly than marine introductions, the community-level effects could be as great, and in the same direction, as those of introduced species. Because it is well-established that introduced species are a primary threat to global biodiversity, it follows that, just like introductions, range shifts have the potential to seriously affect biological systems. In addition, given that ranges shift faster in marine than terrestrial environments, marine communities might be affected faster than terrestrial ones as species shift with climate change. Regardless of habitat, consideration of range shifts in the context of invasion biology can improve our understanding of what to expect from climate change-driven shifts as well as provide tools for formal assessment of risks to community structure and function. [source]


Generalized polynomial chaos and random oscillators

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 3 2004
D. Lucor
Abstract We present a new approach to obtain solutions for general random oscillators using a broad class of polynomial chaos expansions, which are more efficient than the classical Wiener,Hermite expansions. The approach is general but here we present results for linear oscillators only with random forcing or random coefficients. In this context, we are able to obtain relatively sharp error estimates in the representation of the stochastic input as well as the solution. We have also performed computational comparisons with Monte Carlo simulations which show that the new approach can be orders of magnitude faster, especially for compact distributions. Copyright © 2004 John Wiley & Sons, Ltd. [source]


An online active set strategy to overcome the limitations of explicit MPC

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 8 2008
H. J. Ferreau
Abstract Nearly all algorithms for linear model predictive control (MPC) either rely on the solution of convex quadratic programs (QPs) in real time, or on an explicit precalculation of this solution for all possible problem instances. In this paper, we present an online active set strategy for the fast solution of parametric QPs arising in MPC. This strategy exploits solution information of the previous QP under the assumption that the active set does not change much from one QP to the next. Furthermore, we present a modification where the CPU time is limited in order to make it suitable for strict real-time applications. Its performance is demonstrated with a challenging test example comprising 240 variables and 1191 inequalities, which depends on 57 parameters and is prohibitive for explicit MPC approaches. In this example, our strategy allows CPU times of well below 100 ms per QP and was about one order of magnitude faster than a standard active set QP solver. Copyright © 2007 John Wiley & Sons, Ltd. [source]


In situ measurement of solvent-mediated phase transformations during dissolution testing

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 12 2006
Jaakko Aaltonen
Abstract In this study, solvent-mediated phase transformations of theophylline (TP) and nitrofurantoin (NF) were measured in a channel flow intrinsic dissolution test system. The test set-up comprised simultaneous measurement of drug concentration in the dissolution medium (with UV-Vis spectrophotometry) and measurement of the solid-state form of the dissolving solid (in situ with Raman spectroscopy). The solid phase transformations were also investigated off-line with scanning electron microscopy. TP anhydrate underwent a transformation to TP monohydrate, and NF anhydrate (form ,) to NF monohydrate (form II). Transformation of TP anhydrate to TP monohydrate resulted in a clear decrease in the dissolution rate, while the transformation of NF anhydrate (form ,) to NF monohydrate (form II) could not be linked as clearly to changes in the dissolution rate. The transformation of TP was an order of magnitude faster than that of NF. The presence of a water absorbing excipient, microcrystalline cellulose, was found to delay the onset of the transformation of TP anhydrate. Combining the measurement of drug concentration in the dissolution medium with the solid phase measurement offers a deeper understanding of the solvent-mediated phase transformation phenomena during dissolution. © 2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 95:2730,2737, 2006 [source]


Ionic and radical fragmentations of alkoxyhalocarbenes , a perspective

JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 4 2009
Robert A. Moss
Abstract Fragmentations of secondary or tertiary alkoxyhalocarbenes in polar solvents generate carbocations as components of ion pairs. A variety of carbocations can be produced including acyclic, alicyclic, benzyl, bridgehead, cyclopropyl, cyclopropylcarbinyl, and norbornyl examples. Laser flash photolysis (LFP) studies provide kinetics and activation parameters for the carbene fragmentations, which are orders of magnitude faster, and require considerably reduced activation energies, compared to analogous solvolytic carbocation-generative processes. In some cases, the time required for solvent and anion equilibration of the ion pairs can be estimated. In nonpolar solvents, the gas phase, or cryogenic matrices, homolytic carbene fragmentation may, in certain cases, supplant heterolytic fragmentation. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Supramolecular catalysis induced by polysaccharides.

JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 8 2003
Homogeneous hydrolysis of p -nitrobenzyl amylose xanthate
Abstract p -Nitrobenzyl amylose xanthate (AmXNB) was synthesized and characterized by 13C NMR spectroscopy in solution and the solid state. The degree of substitution (DS), calculated from the sulfur content, was 7.0, and this value was similar to that obtained from solid-state 13C NMR using the signal of C-1 as internal standard. The hydrolysis of AmXNB was studied in 10% (v/v) DMSO with,µ,=,0.5 (KCl) at 25,°C. The basic hydrolysis was pseudo-first order, but the water-catalyzed hydrolysis in the pH range 7,9 showed a biphasic plot of ln (,Absorbance) vs time, as has been observed for cellulose xanthate esters, occurring through two parallel reactions with rate constants k,H2O (fast),=,5.3,×,10,5 s,1 and k,H2O (slow),=,3.3,×,10,6 s,1. The fast hydrolysis was more than three orders of magnitude faster than that of the O -ethyl analog. The activation parameters were ,H,,=,20.5,kcal,mol,1 and ,S,,=,+10 cal K,1,mol,1. They showed that the acceleration of the fast hydrolysis of AmXNB and cellulose analogs is due to an entropy of activation effect. There is a linear increase of logk,H2O (fast) with increase in the concentration of the small Li+ ion that produces an increase of the 3-D hydrogen-bond network of water while the large singly charged iodide ion has a considerable inverse effect. These results are strongly consistent with the theory that the supramolecular catalysis induced by modified polysaccharide esters is due to the 3-D hydrogen-bond network of the water in the solvation shell. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Living cationic polymerization of azobenzene-containing vinyl ether and its photoresponsive behavior

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 21 2005
Tomohide Yoshida
Abstract The living cationic polymerization of 4-[2-(vinyloxy)ethoxy]azobenzene (AzoVE) was achieved with various Lewis acids in the presence of an ester as an added base. When Et1.5AlCl1.5 was used as a catalyst, the living polymerization system was controllable by UV irradiation as a result of cis and trans isomerization of the azobenzene side groups. Furthermore, an initiating system consisting of SnCl4 and EtAlCl2 realized fast living polymerization of AzoVE. The polymerization rate of this system was 3 orders of magnitude faster than that obtained with Et1.5AlCl1.5. Poly(4-[2-(vinyloxy)ethoxy]azobenzene) was soluble in a diethyl ether/hexane mixture at 25 °C but became insoluble upon irradiation with UV light. This phase-transition behavior was sensitive and reversible upon irradiation with UV or visible light and reflected the change in polarity occurring with cis and trans isomerization of the azobenzene side groups in the polymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5138,5146, 2005 [source]


High-Temperature Rheology of Calcium Aluminosilicate (Anorthite) Glass-Ceramics under Uniaxial and Triaxial Loading

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 11 2001
Balakrishnan G. Nair
The high-temperature creep behavior of two fine-grained (,3 ,m) anorthite-rich glass-ceramics was characterized at ambient pressure and under a confining pressure of ,300 MPa. Experiments were done at differential stresses of 15,200 MPa and temperatures of 1200°,1320°C. Of the two materials, one had a tabular (lathlike) grain structure with finely dispersed second phase of mullite, mostly in the form of ,3,5 ,m grains comparable to that of the primary anorthite phase, whereas the other had an equiaxed grain morphology with fine (,400 nm) mullite precipitates concentrated at the anorthite grain boundaries. The results of creep experiments at ambient pressure showed that the material with the tabular grain structure had strain rates at least an order of magnitude faster than the equiaxed material. Creep in the tabular-grained material at ambient pressure was accompanied by a significant extent of intergranular cavitation: pore-volume analysis before and after creep in this material suggested that >75% of the bulk strain was due to growth of these voids. The equiaxed material, in contrast, showed a smooth transition from Newtonian (n= 1) creep at low stresses to non-Newtonian behavior at high stresses (n > 2). Under the high confining pressure, the microstructures of both materials underwent significant changes. Grain-boundary mullite precipitates in the undeformed, equiaxed-grain material were replaced by fine (,100 nm), intragranular precipitates of silliminate and corundum because of a pressure-induced chemical reaction. This was accompanied by a significant reduction in grain size in both materials. The substantial microstructural changes at high confining pressure resulted in substantially lower viscosities for both materials. The absence of mullite precipitates at the grain boundaries changed the behavior of the equiaxed material to non-Newtonian (n= 2) at a pressure of ,300 MPa, possibly because of a grain-boundary sliding mechanism; the tabular-grained material showed Newtonian diffusional creep under similar conditions. [source]


A column generation approach for SONET ring assignment

NETWORKS: AN INTERNATIONAL JOURNAL, Issue 3 2006
Elder M. Macambira
Abstract In this article we consider the SONET ring assignment problem (SRAP) presented in 7. The authors pointed out the inadequacy of solving SRAP instances using their integer programming formulation and commercial linear programming solvers. Similar experiences with IP models for SRAP are reported in 1. In this article we reformulate SRAP as a set partitioning model with an additional knapsack constraint. This new formulation has an exponential number of columns and, to solve it, we implemented a branch-and-price/column generation algorithm. Extensive computational experiments showed that the new algorithm is orders of magnitude faster than standard branch-and-bound codes running on compact IP models introduced earlier. Instances taken from 1, 7, which could not be solved there in hours of computation were solved here to optimality in just a few seconds. © 2006 Wiley Periodicals, Inc. NETWORKS, Vol. 47(3), 157,171 2006 [source]


Near-shortest and K-shortest simple paths

NETWORKS: AN INTERNATIONAL JOURNAL, Issue 2 2005
W. Matthew Carlyle
Abstract We present a new algorithm for enumerating all near-shortest simple (loopless) s - t paths in a graph G = (V, E) with nonnegative edge lengths. Letting n = |V| and m = |E|, the time per path enumerated is O(nS(n, m)) given a user-selected shortest-path subroutine with complexity O(S(n, m)). When coupled with binary search, this algorithm solves the corresponding K -shortest paths problem (KSPR) in O(KnS(n, m)(log n+ log cmax)) time, where cmax is the largest edge length. This time complexity is inferior to some other algorithms, but the space complexity is the best available at O(m). Both algorithms are easy to describe, to implement and to extend to more general classes of graphs. In computational tests on grid and road networks, our best polynomial-time algorithm for KSPR appears to be at least an order of magnitude faster than the best algorithm from the literature. However, we devise a simpler algorithm, with exponential worst-case complexity, that is several orders of magnitude faster yet on those test problems. A minor variant on this algorithm also solves "KSPU," which is analogous to KSPR but with loops allowed. © 2005 Wiley Periodicals, Inc. NETWORKS, Vol. 46(2), 98,109 2005 [source]


Crystallization kinetics of poly(trimethylene terephthalate)

POLYMER ENGINEERING & SCIENCE, Issue 2 2001
Hoe H. Chuah
The bulk isothermal crystallization kinetics of poly(trimethylene terephthalate) (PTT) was studied using a differential scanning calorimeter. Avrami's theory was used to analyze the data. Based on crystallinity growth rate, Avrami rate constant, K, and crystallization half-time, PTT's crystallization rate is between those of poly(butylene terephthalate) (PBT) and poly(ethylene terephthalate) (PET) when compared at the same degree of undercooling. PBT has the highest crystallization rate with K in the order of 10,2 to 10,1 min,n. It is about an order of magnitude faster than PTT at 10,3 to 10,2 min,n, which in turn is an order of magnitude faster than PET with K of 10,4 to 10,2 min,n. Contrary to previous reports (PTT was not included in the study) that aromatic polyesters with odd numbers of methylene units were more difficult to crystallize than the even-numbered polyesters, PTT did not fit in the prediction and did not follow the odd-even effect. [source]


A new fast stratospheric ozone chemistry scheme in an intermediate general-circulation model.

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 610 2005
I: Description, evaluation
Abstract Simulation of future climate-composition changes requires simulations of coupled dynamical-radiative-chemical models of many decades in length. Yet, to assure the generality of the simulation's results against uncertainties in emissions, unforced year-to-year variability and dependence on initial conditions, it is necessary to repeat them a significant number of times. The computational cost of such an exercise is still too large when using complex three-dimensional coupled models. We introduce in this paper a computationally efficient chemical scheme, the FAst STratospheric Ozone Chemistry (FASTOC) scheme, which has advantages over many existing fast methods, as it does not rely on relaxation to assumed conditions, does not rely on tuning parameters, and does not rely on linearization approximations. The scheme is nevertheless three orders of magnitude faster than a stiff kinetic equations solver. Part I of the paper gives a detailed description of the FASTOC model and some performance evaluations when incorporated in a general-circulation model (GCM). In Part II, the FASTOC model, coupled to a GCM, is specifically applied to study the impact of climate,chemistry interactions on stratospheric ozone in the middle of the twenty-first century. Copyright © 2005 Royal Meteorological Society [source]


Recent developments in classical density modification

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 4 2010
Kevin Cowtan
Classical density-modification techniques (as opposed to statistical approaches) offer a computationally cheap method for improving phase estimates in order to provide a good electron-density map for model building. The rise of statistical methods has lead to a shift in focus away from the classical approaches; as a result, some recent developments have not made their way into classical density-modification software. This paper describes the application of some recent techniques, including most importantly the use of prior phase information in the likelihood estimation of phase errors within a classical density-modification framework. The resulting software gives significantly better results than comparable classical methods, while remaining nearly two orders of magnitude faster than statistical methods. [source]