Home About us Contact | |||
Magnetite Nanoparticles (magnetite + nanoparticle)
Kinds of Magnetite Nanoparticles Selected AbstractsDNA Hybridization at Magnetic Nanoparticles with Electrochemical Stripping DetectionELECTROANALYSIS, Issue 23 2004Ningning Zhu Abstract A simple and practical method for electrochemical DNA hybridization assay has been developed to take advantage of magnetic nanoparticles for ssDNA immobilization and zinc sulfide nanoparticle as oligonucleotide label. Magnetic nanoparticles were prepared by coprecipitation of Fe2+ and Fe3+ with NH4OH, and then amino silane was coated onto the surface of magnetite nanoparticles. The magnetic nanoparticles have the advantages of easy preparation, easy surface modification and low cost. The target ssDNA with the phosphate group at the 5, end was then covalently immobilized to the amino group of magnetite nanoparticles by forming a phosphoramidate bond in the presence of 1-ethyl-3-(3-dimeth-ylaminopropyl)carbodiimide (EDAC). The zinc sulfide (ZnS) nanoparticle-labeled oligonucleotides probe was used to identify the target ssDNA immobilized on the magnetic nanoparticles based on a specific hybridization reaction. The hybridization events were assessed by the dissolution of the zinc sulfide nanoparticles anchored on the hybrids and the indirect determination of the dissolved zinc ions by anodic stripping voltammetry (ASV) at a mercury film glassy carbon electrode (GCE). The proposed method couples the high sensitivity of anodic stripping analysis for zinc ions with effective magnetic separation for eliminating nonspecific adsorption effects and offers great promise for DNA hybridization analysis. [source] Preparation of Uniform, Water-Soluble, and Multifunctional Nanocomposites with Tunable SizesADVANCED FUNCTIONAL MATERIALS, Issue 5 2010Dechao Niu Abstract Novel, thiol-functionalized, and superparamagnetic, silica composite nanospheres (SH-SSCNs) with diameters smaller than 100,nm are successfully fabricated through the self-assembly of Fe3O4 nanoparticles and polystyrene100 - block -poly(acrylic acid)16 and a subsequent sol-gel process. The size and magnetic properties of the SH-SSCNs can be easily tuned by simply varying the initial concentrations of the magnetite nanoparticles in the oil phase. By incorporating fluorescent dye molecules into the silica network, the composite nanospheres can be further fluorescent-functionalized. The toxicity of the SH-SSCNs is evaluated by choosing three typical cell lines (HUVEC, RAW264.7, and A549) as model cells, and no toxic effects are observed. It is also demonstrated that SH-SSCNs can be used as a new class of magnetic resonance imaging (MRI) probes, having a remarkably high spin,spin (T2) relaxivity (r2*,=,176.1,mM,1 S,1). The combination of the sub-100-nm particle size, monodispersity in aqueous solution, superparamagnetism, and fluorescent properties of the SH-SSCNs, as well as the non-cytotoxicity in vitro, provides a novel and potential candidate for an earlier MRI diagnostic method of cancer. [source] Layer-By-Layer Dendritic Growth of Hyperbranched Thin Films for Surface Sol,Gel Syntheses of Conformal, Functional, Nanocrystalline Oxide Coatings on Complex 3D (Bio)silica TemplatesADVANCED FUNCTIONAL MATERIALS, Issue 17 2009Guojie Wang Abstract Here, a straightforward and general method for the rapid dendritic amplification of accessible surface functional groups on hydroxylated surfaces is described, with focus on its application to 3D biomineral surfaces. Reaction of hydroxyl-bearing silica surfaces with an aminosilane, followed by alternating exposure to a dipentaerythritol-derived polyacrylate solution and a polyamine solution, allows the rapid, layer-by-layer (LBL) build-up of hyperbranched polyamine/polyacrylate thin films. Characterization of such LBL-grown thin films by AFM, ellipsometry, XPS, and contact angle analyses reveals a stepwise and spatially homogeneous increase in film thickness with the number of applied layers. UV,Vis absorption analyses after fluorescein isothiocyanate labeling indicate that significant amine amplification is achieved after the deposition of only 2 layers with saturation achieved after 3,5 layers. Use of this thin-film surface amplification technique for hydroxyl-enrichment of biosilica templates facilitates the conformal surface sol,gel deposition of iron oxide that, upon controlled thermal treatment, is converted into a nanocrystalline (,9.5,nm) magnetite (Fe3O4) coating. The specific adsorption of arsenic onto such magnetite-coated frustules from flowing, arsenic-bearing aqueous solutions is significantly higher than for commercial magnetite nanoparticles (,50,nm in diameter). [source] Superparamagnetic Nanoparticles: Facile Fabrication and Superparamagnetism of Silica-Shielded Magnetite Nanoparticles on Carbon Nitride Nanotubes (Adv. Funct.ADVANCED FUNCTIONAL MATERIALS, Issue 14 2009Mater. The superparamagnetic response of silica-coated magnetite nanoparticles on carbon nitride nanotubes in water is depicted in this cover image. The silica shell helps maintain the superparamagnetic fluid while magnetite nanoparticles on carbon nitride nanotubes without silica layers show a significant degradation of magnetic performance in water. On page 2213, Jeung Ku Kang and co-workers report a facile fabrication of these silica-shielded magnetite nanoparticles on carbon nitride nanotubes via the liquid polyol process. [source] Heparinized Magnetic Nanoparticles: In-Vitro Assessment for Biomedical Applications,ADVANCED FUNCTIONAL MATERIALS, Issue 13 2006C. Wuang Abstract Superparamagnetic magnetite nanoparticles are of great interest owing to their numerous existing and potential biomedical applications. In this study, superparamagnetic magnetite nanoparticles with average diameters of 6,8,nm have been prepared and surface-functionalized with poly(N -isopropylacrylamide) (poly(NIPAAM)) via a surface-initiated atom-transfer radical polymerization, followed by immobilization of heparin. The success of the various surface-functionalization steps has been ascertained using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The rate of internalization of the as-synthesized and surface-functionalized magnetite nanoparticles by mouse macrophage cells has been investigated. The nanoparticle internalization into the macrophages has been visualized using optical microscopy and quantified by inductively coupled plasma spectroscopy. The effectiveness of the heparinized nanoparticles in preventing thrombosis has been determined using the plasma recalcification time. The results indicate that the above-mentioned surface modifications of the magnetite nanoparticles are effective in delaying phagocytosis and preventing blood clotting in vitro. Such properties can be expected to enable their use in biomedical applications. [source] Self-Assembly and Self-Orientation of Truncated Octahedral Magnetite Nanocrystals,ADVANCED MATERIALS, Issue 18 2006K. Zheng Monodisperse magnetite nanoparticles (12,nm) in the shape of Wigner,Seitz crystals self-assemble into a body-centered cubic superlattice (see figure) in which the nanoparticles possess the same crystallographic orientations. Shape plays a critical role in controlling the orientation of the nanoparticles in self-assembly. Both self-assembly and self-orientation of nanoparticles are important for technical applications such as high-density magnetic storage. [source] Platinum Nanoparticles Supported on Ionic Liquid-Modified Magnetic Nanoparticles: Selective Hydrogenation CatalystsADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 13 2007Raed Abu-Reziq Abstract A method for supporting platinum nanoparticles on magnetite nanoparticles is described. The method requires modification of the surface of the magnetic nanoparticles with ionic liquid groups. Before modification, the magnetic nanoparticles are not stable and easily aggregate and, after modification, the magnetite nanoparticles become highly stable and soluble in polar or non-polar organic solvents depending on the alkyl group of the linked ionic liquids. The supporting of platinum nanoparticles on the modified magnetic nanoparticles was achieved by adsorbing platinum salts (K2PtCl4) on the surface of the magnetite nanoparticles via ion exchange with the linked ionic liquid groups and then reducing them by hydrazine. The supported platinum nanoparticles were applied in the catalytic hydrogenation of alkynes in which cis -alkenes were selectively produced, and in the hydrogenation of ,,,-unsaturated aldehydes where the allyl alcohols were obtained as the exclusive products. The new catalyst can be easily separated from the reaction mixtures by applying an external magnetic field and recycled. [source] Bicuculline-induced brain activation in mice detected by functional magnetic resonance imagingMAGNETIC RESONANCE IN MEDICINE, Issue 2 2001Thomas Mueggler Abstract Dynamic measurements of local changes in relative cerebral blood volume (CBVrel) during a pharmacological stimulation paradigm were performed in mice. Using magnetite nanoparticles as an intravascular contrast agent, high-resolution CBVrel maps were obtained. Intravenous administration of the GABAA antagonist bicuculline prompted increases in local CBVrel as assessed by MRI with a high spatial resolution of 0.2 × 0.2 mm2 and a temporal resolution of 21 s. Signal changes occurred 20,30 s after the onset of drug infusion in the somatosensory and motor cortex, followed by other cortical and subcortical structures. The magnitudes of the CBVrel increases were 18% ± 4%, 46% ± 14%, and 67% ± 7%, as compared to prestimulation values for the cortex, and 9% ± 3%, 25% ± 4%, and 36% ± 7% for the caudate putamen for bicuculline doses of 0.6, 1.25, and 1.5 mg/kg, respectively. On-line monitoring of transcutaneous carbon dioxide tension PtcCO2 reflecting arterial PaCO2 did not show any alteration during the stimulation paradigm. One of five of the mice receiving the highest bicuculline dose, and three of seven receiving the intermediate dose displayed a different cortical response pattern. After a CBVrel increase of 40% lasting for approximately 1 min, significant CBVrelreductions by 80% have been observed. Subcortical structures did not display this behavior. The present study suggests that this noninvasive approach of functional MRI (fMRI) can be applied to study drug-induced brain activation by central nervous system (CNS) drugs in mice under normal and pathological situations. Magn Reson Med 46:292,298, 2001. © 2001 Wiley-Liss, Inc. [source] Chitosan-induced synthesis of magnetite nanoparticles via iron ions assemblyPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 9 2008Yongliang Wang Abstract Superparamagnetic magnetite nanoparticles were synthesized induced by chitosan hydrogel under ambient conditions via iron ions assembly, and the inducing effect of chitosan hydrogel was discussed. Results of X-ray diffraction and transmission electron microscopy indicate that the nanoparticles were inverse cubic spinel structure magnetite with diameter about 16,nm, and the superparamagnetic nanoparticles with narrow size distribution dispersed uniformly in chitosan. The magnetization measurements indicated that the nanoparticles showed the typical superparamagnetic behavior. The crystallinity, morphology, and magnetic properties of magnetite nanoparticles were remarkably influenced by the pH values of iron ion solutions. The interaction between magnetite and chitosan was illustrated by FT-IR and thermogravimetric analysis, which concluded that the magnetite nanoparticles were coated by a chitosan layer via the amino groups of chitosan. The chitosan hydrogel assisted in the synthesis of superparamagnetic magnetite nanoparticles through chelation by amino groups. Copyright © 2008 John Wiley & Sons, Ltd. [source] Synthesis and properties of magnetite/poly (aniline-co-8-amino-2-naphthalenesulfonic acid) (SPAN) nanocompositesPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 1 2007Kakarla Raghava Reddy Abstract Composites were prepared by incorporating magnetite (Fe3O4) nanoparticles into the matrix of a sulfonated polyaniline (SPAN) [poly(aniline-co-8-amino-2-naphthalenesulfonic acid) PANSA] through chemical oxidative polymerization of a mixture of aniline and 8-amino-2-naphthalenesulfonic acid in the presence of magnetite nanoparticles. The composite, magnetite/SPAN(PANSA) was characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD), elemental analysis (EA), Fourier transform infrared (FT-IR) spectra, UV-vis spectroscopy, thermogravimetric analysis (TGA), conductivity and magnetic properties measurements. TEM image shows that magnetite nanoparticles were finely distributed into the SPAN matrix. XRD pattern of the nanocomposite reveals the presence of additional crystalline order through the appearance of a sharp peak at ,43° and 71°. Conductivity of the nanocomposite (0.23,S/cm) is much higher than pristine copolymer (1.97,×,10,2,S/cm). The results of FT-IR and UV-visible spectroscopy reveal the presence of molecular level interactions between SO groups in SPAN and magnetite nanoparticles in the composite. Copyright © 2006 John Wiley & Sons, Ltd. [source] Application of magnetic force-based cell patterning for controlling cell,cell interactions in angiogenesisBIOTECHNOLOGY & BIOENGINEERING, Issue 3 2009Kosuke Ino Abstract To investigate the effects of cell,cell interactions on cellular function, the microenvironment surrounding cells should be precisely controlled. Here, we describe a cell patterning technique, which utilizes magnetic force and magnetite nanoparticles. This method was used to develop cell culture arrays for investigation of cell behaviors in angiogenesis. Pin holder devices that contain more than 6,000 pillars on the surface are used for fabricating the cell culture arrays by setting it on a magnet. The magnetically labeled cells were arranged by magnetic distribution. When the human umbilical vein endothelial cells are arranged at 250 µm intervals (5.9 cells/spot), the cells spread toward other cell cluster on adjacent spots in 4.5 h, and formed cord-like structures in 8.5 h. It was shown that cell,cell interactions were successfully investigated using magnetic cell arrangement. Biotechnol. Bioeng. 2009; 102: 882,890. © 2008 Wiley Periodicals, Inc. [source] Growing ZnO Crystals on Magnetite NanoparticlesCHEMISTRY - A EUROPEAN JOURNAL, Issue 7 2004Rachel Turgeman Abstract We report herein on the oriented growth of ZnO crystals on magnetite nanoparticles. The ZnO crystals were grown by hydrolyzing a supersaturated aqueous solution of zinc nitrate. The seeds for the growth were magnetite nanoparticles with a diameter of 5.7 nm and a narrow size distribution. Hollowed ZnO hexagons of 0.15 ,m width and 0.5 ,m length filled with Fe3O4 particles were obtained. HR-TEM (high-resolution transmission electron microscopy) and selected-area EDS (energy-dispersive spectroscopy) show that the nanoparticles are homogenously spread in the ZnO tubes. Zeta potential measurements were employed to understand the relationship between the nanoparticles and the oriented growth of the ZnO crystals. The results show that the surfactants induced the directional growth of the ZnO crystals. [source] |