Magnetite

Distribution by Scientific Domains

Terms modified by Magnetite

  • magnetite deposit
  • magnetite nanoparticle
  • magnetite particle

  • Selected Abstracts


    Ferroelectric Switching in Multiferroic Magnetite (Fe3O4) Thin Films

    ADVANCED MATERIALS, Issue 44 2009
    Marin Alexe
    Real-time ferroelectric polarization switching in magnetite epitaxial thin films is reported, proving that magnetite is not only historically the first material showing magnetism and correlated electron properties, but also that it is ferroelectric with a value of the ferroelectric polarization approaching that of well-known ferroelectric materials such as BaTiO3. [source]


    Oxide and sulphide isograds along a Late Archean, deep-crustal profile in Tamil Nadu, south India

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 4 2005
    D. E. HARLOV
    Abstract Oxide,sulphide,Fe,Mg,silicate and titanite,ilmenite textures as well as their mineral compositions have been studied in felsic and intermediate orthogneisses across an amphibolite (north) to granulite facies (south) traverse of lower Archean crust, Tamil Nadu, south India. Titanite is limited to the amphibolite facies terrane where it rims ilmenite or occurs as independent grains. Pyrite is widespread throughout the traverse increasing in abundance with increasing metamorphic grade. Pyrrhotite is confined to the high-grade granulites. Ilmenite is widespread throughout the traverse increasing in abundance with increasing metamorphic grade and occurring primarily as hemo-ilmenite in the high-grade granulite facies rocks. Magnetite is widespread throughout the traverse and is commonly associated with ilmenite. It decreases in abundance with increasing metamorphic grade. In the granulite facies zone, reaction rims of magnetite + quartz occur along Fe,Mg silicate grain boundaries. Magnetite also commonly rims or is associated with pyrite. Both types of reaction rims represent an oxidation effect resulting from the partial subsolidus reduction of the hematite component in ilmenite to magnetite. This is confirmed by the presence of composite three oxide grains consisting of hematite, magnetite and ilmenite. Magnetite and magnetite,pyrite micro-veins along silicate grain boundaries formed over a wide range of post-peak metamorphic temperatures and pressures ranging from high-grade SO2 to low-grade H2S-dominated conditions. Oxygen fugacities estimated from the orthopyroxene,magnetite,quartz, orthopyroxene,hematite,quartz, and magnetite,hematite buffers average 2.5 log units above QFM. It is proposed that the trends in mineral assemblages, textures and composition are the result of an external, infiltrating concentrated brine containing an oxidizing component such as CaSO4 during high-grade metamorphism later acted upon by prograde and retrograde mineral reactions that do not involve an externally derived fluid phase. [source]


    The role of Raman microspectroscopy in the study of black gloss coatings on Roman pottery

    JOURNAL OF RAMAN SPECTROSCOPY, Issue 1 2005
    Francesca Ospitali
    Abstract Raman microspectroscopy was adopted for the study of black gloss coatings on Roman pottery, found in Rimini (northern Italy) and in Suasa, near Ancona (central Italy), dated second century B.C. This non-destructive technique allowed a very accurate analysis of the crystalline and amorphous components of thin surface layers. The investigated coating is black, homogeneous and glazed, without any crystals, becoming red on approaching to the ceramic body. Magnetite and carbon are the main phases of the black zones, whereas hercynite, quartz, silicates and haematite are the secondary components. In the red zones, approaching the ceramic body, the amount of haematite increases and the amount of magnetite decreases. The presence of carbon, on the surface only, confirms the hypothesis of a firing cycle in a partial reducing atmosphere. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    High oxidation state during formation of Martian nakhlites

    METEORITICS & PLANETARY SCIENCE, Issue 1 2010
    Anja SZYMANSKI
    Oxygen fugacities obtained cluster closely around the FMQ (Fayalite,Magnetite,Quartz) buffer (NWA998 = FMQ , 0.8; Y-000593 = FMQ , 0.7; Nakhla = FMQ; Lafayette = FMQ + 0.1). The corresponding equilibration temperatures are 810 °C for Nakhla and Y-000593, 780 °C for Lafayette and 710 °C for NWA998. All nakhlites record oxygen fugacities significantly higher and with a tighter range than those determined for Martian basalts, i.e., shergottites whose oxygen fugacities vary from FMQ , 1 to FMQ , 4. It has been known for some time that nakhlites are different from other Martian meteorites in chemistry, mineralogy, and crystallization age. The present study adds oxygen fugacity to this list of differences. The comparatively large variation in fO2 recorded by shergottites was interpreted by Herd et al. (2002) as reflecting variable degrees of contamination with crustal fluids that would also carry a light rare earth element (REE)-enriched component. The high oxygen fugacities and the large light REE enrichment of nakhlites fit qualitatively in this model. In detail, however, it is found that the inferred contaminating phase in nakhlites must have been different from those in shergottites. This is supported by unique 182W/184W and 142Nd/144Nd ratios in nakhlites, which are distinct from other Martian meteorites. It is likely that the differences in fO2 between nakhlites and other Martian meteorites were established very early in the history of Mars. Parental trace element rich and trace element poor regions (reservoirs) of Mars mantle (Brandon et al. 2000) must have been kept isolated throughout Martian history. Our results further show significant differences in closure temperature among the different nakhlites. The observed range in equilibration temperatures together with similar fO2 values is attributable to crystallization of nakhlites in the same cumulate pile or lava layer at different burial depths from 0.5 to 30 m below the Martian surface in agreement with Mikouchi et al. (2003) and is further confirmed by similar crystallization ages of about 1.3 Ga ago (e.g., Misawa et al. 2003). [source]


    Magnetite in ALH 84001: An origin by shock-induced thermal decomposition of iron carbonate

    METEORITICS & PLANETARY SCIENCE, Issue 6 2003
    Adrian J. BREARLEY
    Transmission electron microscope studies of carbonate fragments embedded within feldspathic glass show that the fragments contain myriad, nanometer-sized magnetite particles with cuboid, irregular, and teardrop morphologies, frequently associated with voids. The fragments of carbonate must have been incorporated into the melt at temperatures of ,900°C, well above the upper thermal stability of siderite (FeCO3), which decomposes to produce magnetite and CO2 below ,450°C. These observations suggest that most, if not all, of the fine-grained magnetite associated with Fe-bearing carbonate in ALH 84001 could have been formed as result of the thermal decomposition of the siderite (FeCO3) component of the carbonate and is not due to biological activity. [source]


    Genesis of Tertiary Magnetite,Apatite Deposits, Southeast of Zanjan, Iran

    RESOURCE GEOLOGY, Issue 4 2009
    Hossein Azizi
    Abstract Magnetite,apatite deposits in the Alborz volcano,plutonic belt, southeast Zanjan, in Iran, have blade, lenzoid, and vein forms, which extend in an E-W direction. There are many magnetite,apatite veins and veinlets in this region, and some of them are economically important, such as Zaker, Morvarid, Sorkheh,Dizaj, and Aliabad. The sizes of the vein orebodies vary between 2 and 16 m in width, 10,100 m in length, and 5,40 m in depth. Microscopic examination of thin sections and polishes indicate that they are composed of magnetite and apatite, with minor amounts of goethite, hematite, actinolite, quartz, muscovite,illite, talc, dolomite, and calcite. The geochemistry and mineralogy of the granitic host rock reveals that it is calc-alkaline and I-type. Field observations, mineral paragenesis, the composition of the orebodies, and the composition of the fluid inclusions in the apatite minerals with low salinity (less than 20 wt.% NaCl equivalent) indicate that these magnetite veins were hydrothermally generated at about 200,430°C and are not related to silica,iron oxide immiscibility, as are the major Precambrian magnetite deposits in central Iran. [source]


    Experimental shock decomposition of siderite and the origin of magnetite in Martian meteorite ALH 84001

    METEORITICS & PLANETARY SCIENCE, Issue 6 2007
    M. S. BELL
    Naturally occurring siderite was first characterized by a variety of techniques to be sure that the starting material did not contain detectable magnetite. Samples were shocked in tungsten-alloy holders (W = 90%, Ni = 6%, Cu = 4%) to further ensure that any iron phases in the shock products were contributed by the siderite rather than the sample holder. Each sample was shocked to a specific pressure between 30 to 49 GPa. Transformation of siderite to magnetite as characterized by TEM was found in the 49 GPa shock experiment. Compositions of most magnetites are >50% Fe+2 in the octahedral site of the inverse spinel structure. Magnetites produced in shock experiments display the same range of sizes (,50,100 nm), compositions (100% magnetite to 80% magnetite-20% magnesioferrite), and morphologies (equant, elongated, euhedral to subhedral) as magnetites synthesized by Golden et al. (2001) and as the magnetites in Martian meteorite Allan Hills (ALH) 84001. Fritz et al. (2005) previously concluded that ALH 84001 experienced ,32 GPa pressure and a resultant thermal pulse of ,100,110°C. However, ALH 84001 contains evidence of local temperature excursions high enough to melt feldspar, pyroxene, and a silica-rich phase. This 49 GPa experiment demonstrates that magnetite can be produced by the shock decomposition of siderite as a result of local heating to > 470°C. Therefore, magnetite in the rims of carbonates in Martian meteorite ALH 84001 could be a product of shock devolatilization of siderite as well. [source]


    Reductive transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, and methylenedinitramine with elemental iron

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2005
    Seok-Young Oh
    Abstract Reductive (pre)treatment with elemental iron is a potentiallyuseful method for degrading nitramine explosives in water and soil. In the present study, we examined the kinetics, products, and mechanisms of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) degradation with elemental iron. Both RDX and HMX were transformed with iron to formaldehyde, NH, N2O, and soluble products. The yields of formaldehyde were relatively constant (71% ± 5%), whereas the yields of NH and N2O varied, depending on the nitramine and the mechanism. The reactions most likely were controlled by a surface process rather than by external mass transfer. Methylenedinitramine (MDNA) was an intermediate of both RDX and HMX and was transformed quantitatively to formaldehyde with iron. However, product distributions and kinetic modeling results suggest that MDNA represented a minor reaction path and accounted for only 30% of the RDX reacted and 14% of the formaldehyde produced. Additional experiments showed that RDX reduction with elemental iron could be mediated by graphite and Fe2+ sorbed to magnetite, as demonstrated previously for nitroaromatics and nitrate esters. Methylenedinitramine was degraded primarily through reduction in the presence of elemental iron, because its hydrolysis was slow compared to its reactions with elemental iron and surface-bound Fe2+. Our results show that in a cast iron-water system, RDX may be transformed via multiple mechanisms involving different reaction paths and reaction sites. [source]


    Facile Functionalization and Phase Reduction Route of Magnetic Iron Oxide Nanoparticles for Conjugation of Matrix Metalloproteinase,

    ADVANCED ENGINEERING MATERIALS, Issue 6 2010
    Dan Li
    Abstract A protocol for the simultaneous functionalization and phase reduction route of iron oxide magnetic nanoparticles (MNPs) and its further bioconjugation is presented. It was found that surface functionalization of maghemite (,-Fe2O3) nanoparticles with mercaptopropyltrimethoxysilane (MPTMS) under anoxic environment at above 80,°C promotes in situ conversion to magnetite (Fe3O4). Full conversion to Fe3O4, as probed by Mössbauer spectroscopy, with accompanied increase in the composite saturation magnetization, was achieved at 120,°C. By controlling the MPTMS concentration, the resultant silane-MNPs morphology can be tuned from having homogeneous thin layer (<1,nm) to thick continuous silane with embedded MNP multicores. Likewise the amount of surface distal thiol moieties was dependent on the silanization conditions. The density of distal thiols (i.e., amount of thiol per surface area) and resultant aggregate size have direct impact on the attachment, as well as the activity and reusability of the conjugated matrix metalloproteinase (MMP-2, using sulfo-SMCC as crosslinker). The work has important implication to the field of magneto-chemotherapeutics, where spatial control of conjugated active biomolecules under magnetic field and T2 -weighted MRI contrast can be achieved simultaneously. [source]


    Manganese in biogenic magnetite crystals from magnetotactic bacteria

    FEMS MICROBIOLOGY LETTERS, Issue 2 2009
    Carolina N. Keim
    Abstract Magnetotactic bacteria produce either magnetite (Fe3O4) or greigite (Fe3S4) crystals in cytoplasmic organelles called magnetosomes. Whereas greigite magnetosomes can contain up to 10 atom% copper, magnetite produced by magnetotactic bacteria was considered chemically pure for a long time and this characteristic was used to distinguish between biogenic and abiogenic crystals. Recently, it was shown that magnetosomes containing cobalt could be produced by three strains of Magnetospirillum. Here we show that magnetite crystals produced by uncultured magnetotactic bacteria can incorporate manganese up to 2.8 atom% of the total metal content (Fe+Mn) when manganese chloride is added to microcosms. Thus, chemical purity can no longer be taken as a strict prerequisite to consider magnetite crystals to be of biogenic origin. [source]


    Functionalization Strategies for Protease Immobilization on Magnetic Nanoparticles

    ADVANCED FUNCTIONAL MATERIALS, Issue 11 2010
    Dan Li
    Abstract A comprehensive study on the general functionalization strategies for magnetic nanoparticles (MNPs) is presented in this work. Using well-established techniques as well as modified protocols, the wide range of functional moieties grafted on ,-Fe2O3 (maghemite) nanosurfaces include those of amine, aldehyde, carboxylic, epoxy, mercapto, and maleimide ends. Among the modified protocols are the one-step water-catalyzed silanization with mercaptopropyltrimethoxysilane, resulting in dense distal thiols, and the direct functionalization with a heterogeneous bifunctional linker N -[p-maleimidophenyl]isocynanate (PMPI). The former results in a protective Stöber type coating while simultaneously reducing the iron oxide core to magnetite (Fe3O4). The conjugation of trypsin, hereby chosen as model biomolecule, onto the differently functionalized MNPs is further demonstrated and assessed based on its activity, kinetics, and thermo-/long-term stability as well as reusability. Besides aqueous stability and ease in recovery by magnetic separation, the immobilized trypsin on MNPs offers superior protease durability and reusability, without compromising the substrate specificity and sequence coverage of free trypsin. The MNP-based proteases can be used as valuable carriers in proteomics and miniaturized total analysis devices. The applicability of the functional surfaces devised in the current study is also relevant for the conjugation of other biomolecules beyond trypsin. [source]


    Novel Magnetic Hydroxyapatite Nanoparticles as Non-Viral Vectors for the Glial Cell Line-Derived Neurotrophic Factor Gene

    ADVANCED FUNCTIONAL MATERIALS, Issue 1 2010
    Hsi-Chin Wu
    Abstract Nanoparticles (NPs) of synthetic hydroxyapatite (Hap) and natural bone mineral (NBM) are rendered magnetic by treatment with iron ions using a wet-chemical process. The magnetic NPs (mNPs), which are about 300,nm in diameter, display superparamagnetic properties in a superconducting quantum interference device, with a saturation magnetization of about 30,emu g,1. X-ray diffraction and transmission electron microscopy reveal that the magnetic properties of the NPs are the result of the hetero-epitaxial growth of magnetite on the Hap and NBM crystallites. The mNPs display a high binding affinity for plasmid DNA in contrast to magnetite NPs which do not bind the plasmid well. The mHap and mNBM NPs result in substantial increases in the transfection of rat marrow-derived mesenchymal stem cells with the gene for glial cell line-derived neurotrophic factor (GDNF), with magnetofection compared to transfection in the absence of a magnet. The amount of GDNF recovered in the medium approaches therapeutic levels despite the small amount of plasmid delivered by the NPs. [source]


    A Simple and Innovative Route to Prepare a Novel Carbon Nanotube/Prussian Blue Electrode and its Utilization as a Highly Sensitive H2O2 Amperometric Sensor

    ADVANCED FUNCTIONAL MATERIALS, Issue 24 2009
    Edson Nossol
    Abstract The utilization of iron-based species (mainly metallic iron, hematite and magnetite) encapsulated into multi-walled carbon nanotubes (CNTs) as reactants in an electrochemical synthesis is reported for the first time in this work. Prussian blue (PB) is electrosynthesized in a heterogeneous reaction between ferricyanide ions in aqueous solution and the iron-species encapsulated into CNTs, resulting in novel CNT/PB paste electrodes. This innovative preparation route produces an intimate contact between the PB and the CNTs, which improves the stability and redox properties of PB. The PB formation and the chemical interaction between the PB and the CNTs are confirmed by Raman spectroscopy. The electrode is employed as a hydrogen peroxide amperometric sensor, resulting in a very low limit of detection (1.94,×,10,8,mol L,1) and very high sensitivity (15.3,A cm,2M,1). [source]


    Layer-By-Layer Dendritic Growth of Hyperbranched Thin Films for Surface Sol,Gel Syntheses of Conformal, Functional, Nanocrystalline Oxide Coatings on Complex 3D (Bio)silica Templates

    ADVANCED FUNCTIONAL MATERIALS, Issue 17 2009
    Guojie Wang
    Abstract Here, a straightforward and general method for the rapid dendritic amplification of accessible surface functional groups on hydroxylated surfaces is described, with focus on its application to 3D biomineral surfaces. Reaction of hydroxyl-bearing silica surfaces with an aminosilane, followed by alternating exposure to a dipentaerythritol-derived polyacrylate solution and a polyamine solution, allows the rapid, layer-by-layer (LBL) build-up of hyperbranched polyamine/polyacrylate thin films. Characterization of such LBL-grown thin films by AFM, ellipsometry, XPS, and contact angle analyses reveals a stepwise and spatially homogeneous increase in film thickness with the number of applied layers. UV,Vis absorption analyses after fluorescein isothiocyanate labeling indicate that significant amine amplification is achieved after the deposition of only 2 layers with saturation achieved after 3,5 layers. Use of this thin-film surface amplification technique for hydroxyl-enrichment of biosilica templates facilitates the conformal surface sol,gel deposition of iron oxide that, upon controlled thermal treatment, is converted into a nanocrystalline (,9.5,nm) magnetite (Fe3O4) coating. The specific adsorption of arsenic onto such magnetite-coated frustules from flowing, arsenic-bearing aqueous solutions is significantly higher than for commercial magnetite nanoparticles (,50,nm in diameter). [source]


    Geochemistry and petrography of basalt grindstones from the Karak Plateau, central Jordan

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 1 2004
    Brandon G. Watts
    Seventeen basalt grindstone fragments from central Jordan's Karak Plateau were studied. Most of these artifacts are vesicular or amygdaloidal with calcite as the dominant mineral filling the voids. The major minerals are olivine (with iddingsite rims), plagioclase, clinopyroxene, magnetite, and apatite. Glass is present in some samples. One basalt fragment is quite different in appearance and composition and may have come from flows closer to the Dead Sea. Grindstone fragment compositions plot in the tephrite-basanite and basalt fields. A plot of the concentrations of niobium, zirconium, and yttrium reveal that the sample compositions plot in the "within-plate alkali basalt" and "within-plate tholeiite" fields. The acquisition of basalts for preparing such implements appears to have been random. Some may have been introduced through trade and migration. Archaeological and environmental studies on the Karak Plateau are urgently needed because Jordan's population growth and economic development are destroying many sites and their environmental contexts. © 2004 Wiley Periodicals, Inc. [source]


    Tectonic and environmental evolution of Quaternary intramontane basins in Southern Apennines (Italy): insights from palaeomagnetic and rock magnetic investigations

    GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2010
    M. Porreca
    SUMMARY Southern Apennines is characterized by active extensional tectonics with NE,SW stretching direction. The seismicity of the region is very well understood and continuously monitored. In contrast, the onset of extensional tectonics is chronologically poorly constrained. The aim of this study is that to give important constraints on the development of extensional regime and the onset of the continental deposition during Quaternary in Southern Apennines. We report the results of palaeomagnetic and rock magnetic analyses from four Quaternary small intramontane basins in the Picentini Mountains (Southern Apennines). The sedimentary sequences are located at different altitudes, from 600 to 1200 m a.s.l., and were deposited in fluvial-lacustrine environments. We sampled 29 sites in clays and lacustrine limestones from Tizzano, Piano del Gaudo and Acerno basins and in red palaeosoils and matrix-supported conglomerates from the Iumaiano basins. In the clay and limestones samples magnetite, titano-magnetite, hematite and iron-sulphide have been recognized as the main magnetic carriers, whereas magnetite and hematite characterize the Iumaiano conglomerates and red soils. Palaeomagnetic results have been integrated with published radiometric data in order to constrain the age of each sedimentary basins. Sites from the Iumaiano basin, which represents the substrate of the Tizzano and Piano del Gaudo basins, show a reverse polarity and therefore have been attributed to the lower Matuyama chron. In contrast, palaeomagnetic data from Tizzano basin show a transition from reversed to normal polarity along the exposed section, which has been interpreted as the Matuyama/Brunhes transition. Sites from Acerno and Piano del Gaudo basins show a normal polarity, which, according to radiometric and pollen data, have been correlated to the Brunhes epoch. On the base of such results we discuss the tectono-stratigraphic evolution of the basins and the role of extensional tectonics in this portion of the Southern Apennine during the Quaternary. [source]


    The Tortonian reference section at Monte dei Corvi (Italy): evidence for early remanence acquisition in greigite-bearing sediments

    GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2009
    S. K. Hüsing
    SUMMARY The reliability of primary natural remanent magnetization (NRM) signals in greigite-bearing sediments has been frequently questioned. Here, we show that the stable NRM in the deep marine Middle to Late Miocene sediments at Monte dei Corvi, northern Italy, is mainly carried by greigite. Combined rock magnetic experiments and scanning electron microscopy successfully enabled discrimination between two greigite populations. One fine-grained and relatively well-dispersed greigite population (grain size between 60 and 200 nm) is most likely of magnetotactic origin. The second greigite population with larger grain sizes (typically 700 nm to 1 ,m) is most likely of authigenic (bacterially mediated) origin, and is related to post-depositional sulphidization processes. Greigite is the main magnetic remanence carrier in the older part of the section (12.8 to 8.7 Ma), whereas greigite and fine-grained (presumably magnetotactic) magnetite are present in the younger part of the section (8.7 to 6.9 Ma). Similar remanent magnetization directions of the magnetite and greigite components, and the likelihood of a magnetotactic origin, suggests that the NRM is of syn-depositional age. We suggest that moderate methane seepage from the underlying sediments may have occurred that resulted in the preservation of pristine greigite. This corroborates the reliability of the previously established magnetostratigraphy at Monte dei Corvi. [source]


    Magnetic investigation of heavy metals contamination in urban topsoils around the East Lake, Wuhan, China

    GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2007
    Tao Yang
    SUMMARY Magnetic measurements and heavy metal analyses were performed on 133 samples from the urban soils around the East Lake in Wuhan, China. Samples were collected from four areas with different environmental settings: a heavy industrial area well known for thermal power generation and steel works; villages located in the downwind area of the industrial area; a main road with heavy traffic and roads around the East Lake. Results show that concentrations of magnetic particle and heavy metals in urban topsoils are significantly elevated due to the input of coarser-grained magnetite from industrial (e.g. power generation and steel production) and other anthropogenic activities (e.g. vehicle emissions). Concentration-related magnetic parameters, for example, magnetic susceptibility, saturation isothermal remanent magnetization and anhysteretic remanent magnetization, significantly correlate with the concentration of heavy metals. Moreover, in terms of grain sizes, the magnetic particles of different origins can be efficiently discriminated at the studied region. Therefore, magnetic measurements provide a basis for discrimination and identification of different contamination sources, and can be used as an economic alternative to chemical analysis when mapping heavy metal contamination in urban soil around the East Lake region, Wuhan, China. [source]


    Paramagnetic and ferromagnetic anisotropy of magnetic susceptibility in migmatites: measurements in high and low fields and kinematic implications

    GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2004
    Eric C. Ferré
    SUMMARY The separation of paramagnetic and ferromagnetic anisotropy of magnetic susceptibility (AMS) is achieved in this study by using a vibrating sample magnetometer and a torque magnetometer performing directional anisotropy measurements in sufficiently high fields to saturate the ferromagnetic phases. The studied material, a migmatite from Minnesota, has a magnetic mineralogy characterized by ferrimagnetic multidomain titanomagnetite, paramagnetic biotite and a diamagnetic quartzo-feldspathic matrix. The low-field AMS represents the sum of ferromagnetic and paramagnetic contributions because the quartz contribution can be neglected, its magnetic susceptibility being two orders of magnitude smaller than that of biotite. In contrast, measurements in a high field isolate the paramagnetic component of the magnetic fabric. The high-field AMS is consistent between specimens and correlates well with measurements done using the torque magnetometer. The magnetic fabrics of the ferromagnetic and of the paramagnetic minerals are not co-axial, i.e. the subfabrics of the biotite and the magnetite are distinct. We propose that this non-coaxiality is due to a vorticity component during regional deformation and that it reflects the general conditions of deep crustal orogenic deformation. [source]


    Palaeomagnetic study of the El Quemado complex and Marifil formation, Patagonian Jurassic igneous province, Argentina

    GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2003
    Maria P. Iglesia Llanos
    SUMMARY The upper Jurassic El Quemado Complex was sampled at 36 sites from five localities in the cordilleran foothills of southern Patagonia between Lago Argentino and Lago Posadas,Sierra Colorada, and the middle Jurassic Marifil Formation at 12 sites in the Somuncurá Massif near Camarones. The main lithology was ignimbrite, with minor tuff and lava. Petrographical and SEM observation show that the El Quemado rocks suffered an intense, high-temperature alteration which resulted in transformation of most primary Ti-magnetite in pseudobrookite, rutile and minor Ti-haematite and Fe hydrated oxides. A similar, less pronounced alteration occurred in the Marifil rocks. 40Ar/39Ar dating of El Quemado was possible for one sample from Sierra Colorada and yielded an age of 156.5 ± 1.9 Ma. Magnetic mineralogy measurements (isothermal remanence, hysteresis loop, Curie balance) show that the remanent magnetization is dominated by PSD low-Ti magnetite, often associated to a minor high-coercive mineral (haematite). Secondary magnetization components are usually absent or weak at El Quemado sites, strong at Marifil. They were completely erased by thermal and AF demagnetization and a characteristic remanence (ChRM) stable up to temperatures higher than 550°C or peak-field values of 100 mT was successfully isolated. The virtual geomagnetic pole (VGP) from the Marifil Formation (83°S, 138°E) is in agreement with the literature data for Jurassic rocks from stable South America. The El Quemado VGPs fall in two groups. The localities to the north of latitude 48°S (Lago Posadas, Sierra Colorada) yield a VGP (81°S, 172°E) close to that of Marifil, whereas those south of latitude 49°S (Lago San Martín, Lago Argentino) show a highly elongated VGP distribution consistent with counter-clockwise block-rotation about vertical axes. These rotations were likely caused by thrust sheets which were rotating counter-clockwise at the same time they were advancing towards the foreland. The amount of rotation varies according to the location of the sampling sites in the thrust and fold belt. [source]


    Magnetic grain-size distribution of the enhanced component in the loess,palaeosol sequences in the western Loess Plateau of China

    GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2001
    Toshiaki Mishima
    SUMMARY Rock magnetic measurements of Chinese loess,palaeosol samples from the Beiyuan section in Linxia City suggest the presence of two magnetic components: a background component and an enhanced component. The magnetic properties of the enhanced component suggest strong grain-size control, which is in contrast with variable grain-size distribution in loess,palaeosol from the central Loess Plateau. Chemically formed magnetic grains do not fulfil the requirements in the case of the western Loess Plateau because they may show shifts in the grain-size distribution. The difference in climate between the western and central Loess Plateau may lead to different origins and different preservation conditions of the pedogenic magnetite. [source]


    Palaeomagnetism, rock magnetism and geochemistry of Jurassic dykes and correlative redbeds, Massachusetts, USA

    GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2000
    Suzanne A. McEnroe
    Jurassic diabase dykes, sills and sedimentary rocks in central Massachusetts were sampled for palaeomagnetic analysis. The intrusions fall into three of the chemical types for eastern North American diabases: high TiO2 quartz-normative (Holden); low TiO2 quartz-normative (Ware); and high Fe2O3 quartz-normative (Pelham,Loudville). The characteristic magnetizations in the majority of intrusive samples unblock between 550 °C and 580 °C, with Curie temperatures in a discrete interval between 556 °C and 580 °C. The dominant remanence in the diabases is carried by C1 to C3 oxidation-exsolved titanomagnetite occurring as euhedral grains, as fine needles or dust in the matrix, as devitrifed glass, and as fine magnetite-ilmenite-silicate symplectite. In some dykes, titanomagnetite was further modified by deuteric oxidation during post-magmatic cooling, creating titanomaghematite and/or a granulation of the magnetite. Palaeopoles for the three diabase groups are: Holden, 60.1°N, 80.5°E, A95 = 4.1°; Ware, 73.5°N, 85.8°E, A95 = 3.9°; and Pelham,Loudville, 65.3°N, 95.6°E, A95 = 4.1°. These data are combined with samples from two stratigraphic sections through the Early Jurassic part of the Sugarloaf Formation in the Deerfield Basin representing both fine-grained mudstones and coarser arkoses. These haematite-dominated rocks reveal several components of magnetization, a steep recent field direction, an intermediate secondary diagenetic overprint direction in both mudstones and arkoses, and a high-temperature shallow primary direction found only in the mudstones. Palaeopoles for the Sugarloaf Formation are: mudstones, 57.7°N, 81.3°E, A95 = 9.1°; and arkoses, 75.1°N, 131.6°E, A95 = 5.9°. Based on the new palaeomagnetic data reported here, the North American plate in the Middle Jurassic was at higher palaeolatitudes than indicated by the present North American apparent polar wander path. [source]


    Palaeomagnetic records of the Brunhes/Matuyama polarity transition from ODP Leg 124 (Celebes and Sulu seas)

    GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2000
    Hirokuni Oda
    Palaeomagnetic records of the Brunhes/Matuyama geomagnetic polarity transition were obtained from deep-sea sediments of ODP Leg 124 in the Celebes and Sulu seas. Advanced piston core (APC) samples with high magnetization intensities (2,200 mA m,1,) and high sedimentation rates (8.4,10 cm kyr,1,) were recovered from this cruise. Rock-magnetic measurements revealed the carrier of the remanence to be nearly pure magnetite in the pseudo-single-domain range. Pass-through measurements at intervals of 5 mm on APC cores across the Brunhes/Matuyama polarity transition for Holes 767B, 769A and 769B were deconvolved with the magnetometer sensor response using the ABIC-minimizing method. Discrete samples were also taken from the polarity transition zones and subjected to either thermal or alternating field stepwise demagnetization. The results were generally consistent with the pass-through data after the deconvolution. Results from the three holes are in good agreement, particularly those from the two holes 100 m apart at Site 769. The transitional VGP paths from these two holes show two small loops near New Zealand before the equator is crossed. The VGPs continue to swing eastwards to the North Atlantic and then move to the northeastern margin of the Pacific Ocean. The positions of the VGP loops obtained from Site 769 are different from the VGP clusters obtained from both the known volcanic records and the sediment records at the Boso Peninsula and the North Atlantic sites with high sedimentation rates. Such a difference may imply the predominance of the non-dipole field during the transition. Relatively stable mid-high northern latitude VGPs are recognized on all three cores just after the reversal, lasting about 4000 years. The plot of relative intensity versus VGP latitude for the sediment records from the North Atlantic (DSDP Hole 609B) shows a remarkable similarity with our records. Similar patterns were also obtained for the plot of the palaeointensity versus VGP latitude for the La Palma volcanic lava records. These results may suggest the existence of a metastable state of the geodynamo, producing a zonal component just after the Brunhes/Matuyama boundary, which may have played a role in the change of the field intensity. [source]


    Ferroelectric Switching in Multiferroic Magnetite (Fe3O4) Thin Films

    ADVANCED MATERIALS, Issue 44 2009
    Marin Alexe
    Real-time ferroelectric polarization switching in magnetite epitaxial thin films is reported, proving that magnetite is not only historically the first material showing magnetism and correlated electron properties, but also that it is ferroelectric with a value of the ferroelectric polarization approaching that of well-known ferroelectric materials such as BaTiO3. [source]


    Growth of magnetite epitaxial thin films by gas flow sputtering and characterization by FMR

    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, Issue 4 2007
    Hiroshi Sakuma Member
    Abstract The growth of magnetite (Fe3O4) epitaxial thin films on MgO substrates were studied by using gas flow sputtering (GFS). Reflection high-energy electron diffraction (RHEED) and atomic force microscopy showed that the surfaces of the films obtained at a substrate temperature Ts of 300 °C and oxygen flow rates FO2 of 0.12 , 0.18 sccm are fairly flat for the film thickness of about 200 nm. The saturation magnetization and resistivity were close to the reported values of Fe3O4 for Ts= 300°C and FO2 = 0.12,0.20sccm. The films obtained at Ts= 300°C and FO2=0.16 and 0.18 sccm showed Verwey transition, which is persuasive evidence of the formation of Fe3O4. The epitaxial relationship of Fe3O4(100)//MgO(100) and Fe3O4[100]//MgO[100] was confirmed by using ferromagnetic resonance (FMR), and the anisotropy constants and magnetization were obtained by the fitting of resonance-field versus applied-field angle curves. © 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. [source]


    Magnetic and Electrical Characterizations of Half-Metallic Fe3O4 Nanowires,

    ADVANCED MATERIALS, Issue 17 2007
    M.-T. Chang
    The magnetic properties of magnetite (Fe3O4) nanowires are investigated by means of electron holography, which deduces the magnetic information from the phase shift of electrons. The magnetic flux is parallel to the longitudinal axis of the nanowires (see figure). Observations on the magnetization distribution reveal the possibility of regulating the spin current with the half-metallic nanowires, owing to the controlled magnetization distribution in the 1D form. [source]


    Eclogites from the Chinese continental scientific drilling borehole, their petrology and different P-T evolutions

    ISLAND ARC, Issue 4 2007
    Yong-Feng Zhu
    Abstract Four phengite-bearing eclogites, taken from different depths of the Chinese continental scientific drilling (CCSD) borehole in the Sulu ultrahigh pressure terrane, eastern China, were studied with the electron microprobe. The compositional zonations of garnet and omphacite are moderate, whereas phengite compositions generally vary significantly in a single sample from core to rim by decrease of the Si content. Various geothermobarometric methods were applied to constrain the P-T conditions of these eclogites on the basis of the compositional variability of the above minerals. The constrained P-T path for sample B218 is characterized by pressure decrease from ca 3.0 GPa (ca 600°C) to 1.3 GPa (ca 550°C). Eclogite B310 yielded P-T conditions of 3.0 GPa and 750°C. The path for eclogite B1008 starts at about 650°C and 3.6,3.9 GPa (stage I) followed by a pressure decrease to 2.8,3.0 GPa and a significant temperature rise (stages II and IIIa, 750,810°C). Afterwards, this rock cooled down to 620,660°C at still high pressures (2.5,2.7 GPa, stage IIIb). Retrograde conditions were about 670°C and 1.3 GPa (stage IV). Eclogite B1039 yielded a P-T path starting at ca 600°C and 3.3,3.9 GPa (stage I). A pressure decrease to about 3.0 GPa (stage II, 590,610°C) and then a moderate isobaric temperature increase to ca 630°C (stage III) followed. Stage IV is characterized by temperatures of 650°C at pressures close to 1.3 GPa. During and after this stage (hydrous) fluids partially rich in potassium penetrated the rocks causing minor changes. Relatively high oxygen fugacities led to andradite and magnetite among the newly formed minerals. We think that the above findings can be best explained by mass flow in a subduction channel. Thus, we conclude that the assembly of UHP rocks of the CCSD site, eclogites, quartzofeldspathic rocks, and peridotites, cannot represent a crustal section that was already coherent at UHP conditions as it is the common belief currently. The coherency was attained after significant exhumation of these UHP rocks. [source]


    Provenance of sandstones from the Wakino Subgroup of the Lower Cretaceous Kanmon Group, northern Kyushu, Japan

    ISLAND ARC, Issue 1 2000
    Daniel K. Asiedu
    Abstract The Wakino Subgroup is a lower stratigraphic unit of the Lower Cretaceous Kanmon Group. Previous studies on provenance of Wakino sediments have mainly concentrated on either petrography of major framework grains or bulk rock geochemistry of shales. This study addresses the provenance of the Wakino sandstones by integrating the petrographic, bulk rock geochemistry, and mineral chemistry approaches. The proportions of framework grains of the Wakino sandstones suggest derivation from either a single geologically heterogeneous source terrane or multiple source areas. Major source lithologies are granitic rocks and high-grade metamorphic rocks but notable amounts of detritus were also derived from felsic, intermediate and mafic volcanic rocks, older sedimentary rocks, and ophiolitic rocks. The heavy mineral assemblage include, in order of decreasing abundance: opaque minerals (ilmenite and magnetite with minor rutile), zircon, garnet, chromian spinel, aluminum silicate mineral (probably andalusite), rutile, epidote, tourmaline and pyroxene. Zircon morphology suggests its derivation from granitic rocks. Chemistry of chromian spinel indicates that the chromian spinel grains were derived from the ultramafic cumulate member of an ophiolite suite. Garnet and ilmenite chemistry suggests their derivation from metamorphic rocks of the epidote-amphibolite to upper amphibolite facies though other source rocks cannot be discounted entirely. Major and trace element data for the Wakino sediments suggest their derivation from igneous and/or metamorphic rocks of felsic composition. The major element compositions suggest that the type of tectonic environment was of an active continental margin. The trace element data indicate that the sediments were derived from crustal rocks with a minor contribution from mantle-derived rocks. The trace element data further suggest that recycled sedimentary rocks are not major contributors of detritus. It appears that the granitic and metamorphic rocks of the Precambrian Ryongnam Massif in South Korea were the major contributors of detritus to the Wakino basin. A minor but significant amount of detritus was derived from the basement rocks of the Akiyoshi and Sangun Terrane. The chromian spinel appears to have been derived from a missing terrane though the ultramafic rocks in the Ogcheon Belt cannot be discounted. [source]


    Nondestructive characterization of ferrofluids by wide-angle synchrotron light diffraction: crystalline structure and size distribution of colloidal nanoparticles

    JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 5 2008
    Alexei Vorobiev
    The combination of magnetic and nonmagnetic interactions between the colloidal particles in ferrofluids results in various local inter-particle correlations that, in turn, change the macroscopic properties of the whole system. Therefore, characterization of the particle ensemble is a crucial point, allowing optimization of a ferrofluid for a particular application. Here it is shown how the crystal structure of the particles can be easily obtained in a fast synchrotron light diffraction experiment without any special treatment of the ferrofluid sample. Moreover, from the same diffraction patterns, such important parameters as particle mean size and dispersion are retrieved; these are compared with the corresponding parameters obtained from electron microscopy data. A particular problem of magnetite,maghemite transformation in nanoparticles stabilized by the surfactant shell is pointed out. [source]


    Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis: samples 2, 3, 4, synthetic bauxite, natural granodiorite and pharmaceuticals

    JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 4 2002
    Nicola V. Y. Scarlett
    The International Union of Crystallography (IUCr) Commission on Powder Diffraction (CPD) has sponsored a round robin on the determination of quantitative phase abundance from diffraction data. The aims of the round robin have been detailed by Madsen et al. [J. Appl. Cryst. (2001), 34, 409,426]. In summary, they were (i) to document the methods and strategies commonly employed in quantitative phases analysis (QPA), especially those involving powder diffraction, (ii) to assess levels of accuracy, precision and lower limits of detection, (iii) to identify specific problem areas and develop practical solutions, (iv) to formulate recommended procedures for QPA using diffraction data, and (v) to create a standard set of samples for future reference. The first paper (Madsen et al., 2001) covered the results of sample 1 (a simple three-phase mixture of corundum, fluorite and zincite). The remaining samples used in the round robin covered a wide range of analytical complexity, and presented a series of different problems to the analysts. These problems included preferred orientation (sample 2), the analysis of amorphous content (sample 3), microabsorption (sample 4), complex synthetic and natural mineral suites, along with pharmaceutical mixtures with and without an amorphous component. This paper forms the second part of the round-robin study and reports the results of samples 2 (corundum, fluorite, zincite, brucite), 3 (corundum, fluorite, zincite, silica flour) and 4 (corundum, magnetite, zircon), synthetic bauxite, natural granodiorite and the synthetic pharmaceutical mixtures (mannitol, nizatidine, valine, sucrose, starch). The outcomes of this second part of the round robin support the findings of the initial study. The presence of increased analytical problems within these samples has only served to exacerbate the difficulties experienced by many operators with the sample 1 suite. The major difficulties are caused by lack of operator expertise, which becomes more apparent with these more complex samples. Some of these samples also introduced the requirement for skill and judgement in sample preparation techniques. This second part of the round robin concluded that the greatest physical obstacle to accurate QPA for X-ray based methods is the presence of absorption contrast between phases (microabsorption), which may prove to be insurmountable in some circumstances. [source]