Magnetic Susceptibility Measurements (magnetic + susceptibility_measurement)

Distribution by Scientific Domains


Selected Abstracts


Two Hexanickel-Substituted Keggin-Type Germanotungstates,

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 24 2008
Jun-Wei Zhao
Abstract Two new inorganic,organic hybrid germanotungstates built from trivacant Keggin fragments and in situ generated hexanickel clusters [Ni(en)2]0.5[{Ni6(,3 -OH)3(en)3(H2O)6}(B-,-GeW9O34)]·3H2O (1) and [{Ni6(,3 -OH)3(dap)3(H2O)6}(B-,-GeW9O34)]·H3O·4H2O (2) (en = ethylenediamine and dap = 1,2-diaminopropane) were hydrothermally synthesized and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, single-crystal X-ray diffraction and magnetic analysis. Compound 1 crystallizes in the monoclinic space group P21/n; whereas compound 2 crystallizes in the monoclinic space group P21/c. Single-crystal X-ray diffraction indicates that both contain a hexa-NiII -substituted trivacant Keggin unit [{Ni6(,3 -OH)3(L)3(H2O)6}(B-,-GeW9O34)], (L = en or dap). Magnetic susceptibility measurements show the presence of ferromagnetic coupling interactions within the hexa-NiII clusters for 1 and 2. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


Synthesis, Structural, Thermal and Magnetic Characterization of a Pyrophosphato-Bridged Cobalt(II) Complex

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 17 2008
Oluwatayo F. Ikotun
Abstract The reaction in water of CoII sulfate heptahydrate with 1,10-phenanthroline (phen) and sodium pyrophosphate (Na4P2O7) in a 2:4:1 stoichiometric ratio resulted in the crystallization of a neutral dinuclear CoII complex, {[Co(phen)2]2(,-P2O7)}·6MeOH (1), as revealed by a single-crystal X-ray diffraction study. The bridging pyrophosphato ligand between the two [Co(phen)2]2+ units in a bis(bidentate) coordination mode places the adjacent metal centers at 4.857 Å distance, and its conformation gives rise to intramolecular ,,, stacking interaction between adjacent phen ligands. Indeed, intermolecular ,,, stacking interactions between phen ligands from adjacent dinuclear complexes create a supramolecular 2D network in 1. Magnetic susceptibility measurements on a polycrystalline sample of 1 in the temperature range 1.9,295 K are typical of an overall antiferromagnetic coupling with a maximum of the magnetic susceptibility at 3.0 K. The analysis of the magnetic data in the whole temperature range allows the determination of the value of the intramolecular magnetic coupling (J = ,1.23 cm,1). The ability of the pyrophosphato ligand to mediate magnetic interactions between different first-row transition-metal ions when adopting the bis(bidentate) bridging mode is analyzed and discussed in the light of the small number of magneto-structural reports on this type of compound, bearing in mind the number of unpaired electrons and type of magnetic orbitals on each metal center. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


Synthesis, Crystal Structure, and Magnetic Properties of Two Manganese(II) Polymers Bearing Ferrocenecarboxylato Ligands

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 14 2007
Zilu Chen
Abstract Reactions of Mn(ClO4)2·6H2O with FcCO2Na [Fc = (,5 -C5H4)Fe(,5 -C5H5)] in methanol solution gave [Mn3(FcCO2)6(CH3OH)4]n (1), and, in the presence of 4,4,-bipyridine (4,4,-bpy), [Mn3(FcCO2)6(H2O)2(4,4,-bpy)]n (2). Both complexes have the similar chains with a sequence of ,Mn,(,2 -COO)n,Mn,(,2 -COO),Mn,(,2 -COO),Mn,(,2 -COO)n,Mn, (n = 4 and 2 for complex 1 and 2, respectively), which are constructed alternatively from mononuclear [MnII] units and dinuclear [Mn2(FcCO2)4] units by ,2 -ferrocenecarboxylato- O,O, bridging. The two MnII ions in the dinuclear [Mn2(FcCO2)4] units of complex 1 are connected by four ferrocenecarboxylato ligands to form a swastika-like shaped skeleton, which is rare in metallocenecarboxylato complexes. However, the two MnII ions in the dinuclear [Mn2(FcCO2)4] units of complex 2 are bridged only by two carboxylato ligands, and the other two ferrocenecarboxylato ligands in this unit bind in a chelating mode. The chains in complex 2 are further interconnected by the coordinated 4,4,-bipyridine molecules to form two-dimensional coordination sheets. Magnetic susceptibility measurements revealed a weak antiferromagnetic coupling for both complexes. A model Heisenberg chain comprising classical spins coupled through alternating exchange interactions J1,J1,J2 (AF1,AF1,AF2) is proposed to describe the magnetic behavior. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


Dicopper(II) Complexes with the Enantiomers of a Bidentate Chiral Reduced Schiff Base: Inclusion of Chlorinated Solvents and Chiral Recognition of1,2-Dichloroethane Rotamers in the Crystal Lattice

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 14 2006
Vamsee Krishna Muppidi
Abstract Bisphenoxo-bridged dicopper(II) complexes [Cu2Ln2Cl2] {1 (n = 1) and 2 (n = 2)} with the N,O-donor reduced Schiff bases N -(2-hydroxybenzyl)-(R)-,-methylbenzylamine (HL1) and N -(2-hydroxybenzyl)-(S)-,-methylbenzylamine (HL2) have been synthesised and characterised. In both 1 and 2, the bidentate chiral ligands coordinate the metal centres through the secondary amine N atom and the bridging phenolate O atom. The chloride ion occupies the fourth coordination site and completes a slightly distorted square-planar NO2Cl environment around each copper(II) centre. Magnetic susceptibility measurements in the solid state suggest a strong antiferromagnetic interaction between the metal centres in both complexes. Both 1 and 2 readily form 1:1 host-guest compounds with chlorinated solvents such as CH2Cl2, CHCl3 and Cl(CH2)2Cl. All the host-guest compounds crystallise in noncentrosymmetric space groups. 1·CH2Cl2 and 2·CH2Cl2 crystallise in the P21 space group while 1·CHCl3, 2·CHCl3, 1·Cl(CH2)2Cl and 2·Cl(CH2)2Cl crystallise in the P212121 space group. In these inclusion crystals, the C,H···Cl interactions between the guest and the host molecules are primarily responsible for enclatheration of the chloroalkane molecules. In the case of CH2Cl2, one of its Cl atoms acts as the acceptor. On the other hand, for CHCl3 and Cl(CH2)2Cl, the metal coordinated Cl atom of the host complex acts as the acceptor. The structures of 1·(P)-Cl(CH2)2Cl and 2·(M)-Cl(CH2)2Cl provide rare examples for chiral recognition of the right handed (P) and the left handed (M) gauche forms of Cl(CH2)2Cl in molecular assemblies. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source]


Syntheses and Crystal Structures of Tetrakis(arylamidine)nickel(II) Chloride and Bis[2,4-dipyridyl-1,3,5-triazapentadienato]nickel(II)

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 2 2004
Jianping Guo
Abstract The reaction of LiN(SiMe3)2 with arylnitrile, followed by the addition of anhydrous NiCl2 gives ionic complexes of the general formula [Ni{H2NC(Ar)=NH}4]Cl2 (Ar = Ph 1, p -tolyl 2). When the above reaction is carried out with cyanopyridine instead of arylnitrile under the same reaction conditions, neutral complexes of the general formula [{HN=C(Py)N=C(Py)NH}2Ni] (Py = 4-pyridyl, 3; 3-pyridyl, 4] are obtained. Compound 1 undergoes a metathesis reaction with sodium benzoate to give the neutral complex [(PhCO2)2Ni {H2NC(Ph)=NH}4] (5). Magnetic susceptibility measurements show that 1,4 are diamagnetic and that 5 is paramagnetic with two unpaired electrons. These results suggest that 1,4 are d8 square-planar complexes and 5 is an octahedral complex. The solid state structures of compounds 1,5 were determined by X-ray crystallography. Structural analyses reveal that 1 and 2 form a one-dimensional network through charge-assisted hydrogen bonds; whereas 5 forms a one-dimensional network through hydrogen bonds only. In complexes 3 and 4, the 2,4-dipyridyl-1,3,5-triazapentadienyl ligand behaves as a bidentate ligand forming a six-membered ring with the metal ion. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]


Polymeric, Molecular, and Cation/Anion Arrangements in Chloro-, Bromo-, and Iododiruthenium(II,III) Carboxylate Compounds

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 12 2003
M. Carmen Barral
Abstract The synthesis and characterization of the anhydrous compounds [Ru2X(,-O2CR)4] [R = CH2CH2OPh, X = Cl (1a), Br (2a), I (3a); R = CMePh2, X = Br (5a), I (6a)] and of the solvated complexes [Ru2X(,-O2CR)4(H2O)] [R = CH2CH2OPh, X = Cl (1b), I (3b); R = CMePh2, X = Cl (4b), Br (5b), I (6b)] are described. Thermogravimetric analyses have been used to confirm the anhydrous or solvated natures of the complexes. The crystal structures of 1b·2MeOH, 3b·0.5H2O, and 4b have been investigated by X-ray diffraction and none of them shows the usual polymeric arrangement reported for tetracarboxylatodiruthenium(II,III) compounds. The structure of 3b·0.5H2O consists of cationic and anionic units, [Ru2(,-O2CCH2CH2OPh)4(H2O)2][Ru2I2(,-O2CCH2CH2OPh)4], and represents the first reported crystal structure of a tetracarboxylato(iodo)diruthenium(II,III) derivative. The structures 1b·2MeOH and 4b each show the presence of discrete dinuclear molecules. The crystal structure of [Ru2Cl(,-O2CCMePh2)4(H2O)] demonstrates that diruthenium compounds with the same halide and carboxylate ligands may adopt polymeric or discrete molecular dispositions. Magnetic susceptibility measurements of the complexes in the 2,300 K range have been carried out. Complex 2a shows a strong antiferromagnetic coupling, consistent with the existence of linear chains in the solid state. The complexes [Ru2X(,-O2CR)4(H2O)] show weak through-space antiferromagnetic coupling, in accordance with non-polymeric structures. The magnetic behaviour of 1a, 3a, 5a, and 6a suggests a mixture of arrangements. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source]


In situ identification, pairing, and classification of meteorites from Antarctica through magnetic susceptibility measurements

METEORITICS & PLANETARY SCIENCE, Issue 3 2006
Luigi Folco
Magnetic susceptibility measurements carried out with a pocket meter (SM30) during the 2003/04 PNRA meteorite collection expedition to northern Victoria Land (Antarctica) proved to be a rapid, sensitive, non-destructive means for the in situ identification, pairing, and classification of meteorites. In blue ice fields characterized by the presence of moraines and glacial drifts (e.g., Miller Butte, Roberts Butte, and Frontier Mountain), magnetic susceptibility measurements allowed discrimination of meteorites from abundant terrestrial stones that look like meteorites thanks to the relatively high magnetic susceptibility of the former with respect to terrestrial rocks. Comparative measurements helped identify 16 paired fragments found at Johannessen Nunataks, thereby reducing unnecessary duplication of laboratory analyses and statistical bias. Following classifications schemes developed by us in this and previous works, magnetic susceptibility measurements also helped classify stony meteorites directly in the field, thereby providing a means for selecting samples with higher research priority. A magnetic gradiometer capable of detecting perturbations in the Earth's magnetic field induced by the presence of meteorites was an efficient tool for locating meteorites buried in snow along the downwind margin of the Frontier Mountain blue ice field. Based on these results, we believe that magnetic sensors should constitute an additional payload for robotic search for meteorites on the Antarctic ice sheet and, by extension, on the surface of Mars where meteorite accumulations are predicted by theoretical works. Lastly, magnetic susceptibility data was successfully used to crosscheck the later petrographic classification of the 123 recovered meteorites, allowing the detection of misclassified or peculiar specimens. [source]


Synthesis and characterization of Cu3TaIn3Se7 and CuTa2InTe4

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 7 2008
P. Grima-Gallardo
Abstract Polycrystalline samples of Cu3TaIn3Se7 and CuTa2InTe4 were synthesized by the usual melt and anneal technique. X-ray powder diffraction showed a single phase behavior for both samples with tetragonal symmetry and unit cell parameter values a = 5.794 ± 0.002 Å, c = 11.66 ± 0.01 Å, c /a = 2.01, V = 391 ± 1 Å3 and a = 6.193 ± 0.001 Å, c = 12.400 ± 0.002 Å, c /a = 2.00, V = 475 ± 1 Å3, respectively. Differential thermal analysis (DTA) measurements suggested a complicated behavior near the melting point with several thermal transitions observed in the heating and cooling runs. From the shape of the DTA peaks it was deduced that the melting is incongruent for both materials. Magnetic susceptibility measurements (zero-field cooling and field cooling) indicated an antiferromagnetic character with transition temperatures of T = 70 K (Cu3TaIn3Se7) and 42 K (CuTa2InTe4). A spin,glass transition was observed in Cu3TaIn3Se7 with Tf , 50 K. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


The geophysical evaluation of British lead and copper working sites.

ARCHAEOLOGICAL PROSPECTION, Issue 3 2002
Comparisons with iron working
Abstract Recent research at the University of Bradford has been very effective in evaluating early iron-working sites using geophysical techniques. In addition, lead and copper smelting sites have been surveyed with a fluxgate gradiometer. Although the fluxgate gradiometer readings from these sites are lower than those from iron-smelting sites it is possible to identify anomalies related to the different smelting methods. The paper provides details of some of the surveys and the different features that may be identified. Magnetic susceptibility measurements of selected slag samples provided additional information. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Spectroscopic and crystal structure analysis of diamminebis(2,4,6-triiodophenolato-O) copper(II)

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 5 2006
Gülsün Göka
Abstract The crystal structure of [Cu(C6H2I3O)2(NH3)2] (CCDC 238896) has been determined by x-ray diffraction. This monomeric centrosymmetric Cu(II) complex crystallizes in the monoclinic system. The CuO2N2 coordination sphere is trans -planar, [Cu,O: 1.943(5) Å and Cu-N: 1.972(7)] with the fifth and sixth coordination sites occupied by I atoms from the phenoxide ions [Cu,I1: 3.3552(8) Å] to form a tetragonally elongated octahedral structure for CuO2N2I2 coordination. The complex molecules hold together in a one dimensional chain true [100] direction by intermolecular hydrogen bonds. Differantial scanning calorimeter, FTIR and magnetic susceptibility measurements were also performed in order to identify the title complex. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Synthesis, crystal structure and characterization of new transition metal compounds of bromophenols: Bis(2,4,6-tribromophenolato) di(N-methylimidazole)M(II) (M=Co, Cu)

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 3 2005
P. Camurlu
Abstract Bis(2,4,6-tribromophenolato)di(N-methyl imidazole)M(II), where M stands for cobalt and copper metals, was synthesized via reaction of the corresponding metal sulphate and 2,4,6-tribromophenolate in aqueous media in the presence of N-methyl imidazole and sodium hydroxide. Although various crystallization procedures were applied only cobalt complex was obtained as single crystals. The Co(II) ion has a distorted octahedral enviroment involving two O atoms and two N atoms of the Bis(2,4,6-tribromophenolato)di(N-methyl imidazole) ligand. Powder x-ray diffraction pattern of copper compound was used for cooper complex. For characterizations of complexes carbon, hydrogen and nitrogen elemental analysis, FTIR and UV spectroscopy, DSC thermal analysis and magnetic susceptibility measurements at room temperature were performed. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Textural and compositional controls on modern beach and dune sands, New Zealand

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 3 2007
J. J. Kasper-Zubillaga
Abstract Textural, compositional, physical and geophysical determinations were carried out on 111 beach and dune sand samples from two areas in New Zealand: the Kapiti,Foxton coast sourced by terranes of andesite and greywackes and the Farewell Spit,Wharariki coast sourced by a wide variety of Paleozoic terranes. Our aim is to understand how long-shore drift, beach width and source rock control the sedimentological and petrographic characteristics of beach and dune sands. Furthermore, this study shows the usefulness of specific minerals (quartz, plagioclase with magnetite inclusions, monomineralic opaque grains) to interpret the physical processes (fluvial discharges, long-shore currents, winds) that distribute beach and dune sands in narrow and wide coastal plains. This was done by means of direct (grain size and modal analyses) and indirect (specific gravity, magnetic/non-magnetic separations M/NM, magnetic susceptibility measurements, hysteresis loops) methods. Results are compared with beach sands from Hawaii, Oregon, the Spanish Mediterranean, Elba Island and Southern California. Compositionally, the Kapiti,Foxton sands are similar to first-order immature sands, which retain their fluvial signature. This results from the high discharge of rivers and the narrow beaches that control the composition of the Kapiti,Foxton sands. The abundance of feldspar with magnetite inclusions controls the specific gravity of the Kapiti,Foxton sands due to their low content of opaque minerals and coarse grain size. Magnetic susceptibility of the sands is related mainly to the abundance of feldspars with Fe oxides, volcanic lithics and free-opaque minerals. The Farewell Spit,Wharariki sands are slightly more mature than the Kapiti,Foxton sands. The composition of the Farewell Spit,Wharariki sands does not reflect accurately their provenance due to the prevalence of long-shore drift, waves, little river input and a wide beach. Low abundance of feldspar with magnetite inclusions and free opaque grains produces poor correlations between specific gravity (Sg) and Fe oxide bearing minerals. The small correlation between opaque grains and M/NM may be related to grain size. The magnetic susceptibility of Farewell Spit,Wharariki sands is low due to the low content of grains with magnetite inclusions. Hysteresis and isothermal remnant magnetization (IRM) agree with the magnetic susceptibility values. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Systematic Hydrothermal Investigation of Metal Phosphonatobenzenesulfonates by High-Throughput Methods

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 24 2010
Palanikumar Maniam
Abstract A high-throughput (HT) investigation using the rigid bifunctional ligand 4-phosphonobenzenesulfonic acid, H2O3P-C6H4 -SO3H (H3L), generated five new phosphonatobenzenesulfonates with copper(II) or lead(II) ions. A comprehensive HT study comprising the screenings of different metal ions, metal salt types and the synthesis optimization were conducted whereby the influence of pH and molar ratios M2+/H3L were investigated. The HT-study led to five new compounds Pb2[(O3P-C6H4 -SO3)(OH)] (1), Cu1.5[(O3P-C6H4 -SO3)(H2O)] (2), NaCu(O3P-C6H4 -SO3)(H2O)3 (3), Cu2[(O3P-C6H4 -SO3)(OH)(H2O)] (4) and Cu3[(O3P-C6H4 -SO3)2(H2O)2] (5). Metal ion screening showed lead(II) and copper(II) to be suitable metal ions. The utilization of discovery and focused arrays allowed to determine the optimal formation fields of the respective compounds. The crystal structures were determined from single-crystal X-ray diffraction and revealed the presence of various MOx polyhedra that form clusters, chains or layers which are connected through the organic linker. IR spectra, thermogravimetric studies, magnetic susceptibility measurements and elemental analyses were conducted to further characterize the compounds 1, 3, 4 and 5. [source]


A CuIINiII Complex with Ethylenediamine: Crystal Structure and Ferromagnetic Behaviour of an Aqua-Bridged Heterometallic Chain Containing Ambidentate Ni(OAc)42, Blocks

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 22 2010
Oksana V. Nesterova
Abstract A one-pot reaction of copper powder and nickel and ammonium acetates in a CH3OH solution of ethylenediamine (en) yields a unique 1D aqua-bridged polymer [Cu(en)2(,2 -H2O)2Ni(OAc)4]n·4nH2O (1) with an ambidentate Ni(OAc)42, fragment that has not been previously characterized. The basic structural motif of 1 contains a previously unreported heterometallic M(,2 -H2O)M, aqua-bridge chain with alternating metal atoms. A complex system of N/O,H···O hydrogen bonds strengthens the polymeric chains and links them into a supramolecular three-dimensional network. Variable-temperature magnetic susceptibility measurements of 1 revealed a weak ferromagnetic coupling (J = 1.1 cm,1) between the paramagnetic copper(II) and nickel(II) ions, which is transmitted through the oxygen bridges. [source]


Bis(terdentate) Pyrazole/Pyridine Ligands: Synthesis, Crystal Structures and Magnetic Properties of Bridged Binuclear and Tetranuclear Copper(II) Complexes

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 23 2009
Akhilesh Kumar Singh
Abstract A new binucleating bis(terdentate) ligand, 3,5-[3-bis(2-pyridyl)pyrazole-1-ylmethyl]pyrazole (HL2), was synthesized. Reaction of the deprotonated ligand L2 with hydrated CuII salts gives (,-pyrazolato)(,-hydroxido)-bridged binuclear and tetranuclear complexes [L2Cu2(,-OH)(ClO4)(MeCN)](ClO4) (2), [L2Cu2(dmf)2(,3 -OH)]2(ClO4)4·4dmf (3·4dmf) and [L2L,Cu2](ClO4)2 [4; HL, = 3-(2-pyridyl)pyrazole]. In these complexes, both ,-OH and ,3 -OH bridges were observed. This contrasts the situation for a dicopper(II) complex of the related bis(terdentate) ligand 3,5-bis[6(2,2,-dipyridyl)]pyrazole (HL1), {L1Cu2(OMe)(MeOH)[,1 - O -(NO3)]}{[Cu2(NO3)2(,-OMe)2]}0.5·MeOH (1·MeOH), where the shorter and more rigid ligand side arms enforce a larger Cu···Cu separation and the formation of a MeO,HOMe moiety within the bimetallic pocket. Molecular structures of all complexes were elucidated by X-ray crystallography. Variable-temperature magnetic susceptibility measurements (295,2 K) for powdered samples of complexes 2,4 reveal strong antiferromagnetic coupling between two copper centres. The magnitude of the coupling is discussed in view of the structural features. During the preparation of complex 4, partial ligand hydrolysis was also observed, but this strongly depends on the reaction conditions.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


Do Metal,Metal Multiply-Bonded "Ligands" Have a trans Influence?

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 36 2008
Magnetic Comparisons of Heterometallic CrCr···Co, MoMo···Co Interactions, Structural
Abstract Reported here are two new compounds containing either a CrCr···Co [1, CrCrCo(dpa)4Cl2, dpa = 2,2,-dipyridylamide] or a MoMo···Co [2, MoMoCo(dpa)4Cl2] framework both having a multiply-bonded unit (CrCr in 1, MoMo in 2) in close proximity to the Co2+ ion and trans to a Co,Cl bond. Variable temperature magnetic susceptibility measurements reveal 1 to have a temperature-dependent spin equilibrium between a low-spin (S = 1/2) and high-spin (S = 3/2) state, whereas the Co2+ ion in 2 exists solely in its high-spin state. The crystal structures of 1 and 2 were determined. Variable temperature crystallographic data of 1 at 100 K and at room temperature reveal that the spin-transition affects not only the Co,ligand bond lengths but also the terminal Cr,ligand bond lengths. Whereas the Cr···Co distance becomes shorter by 0.13 Å in the low-spin form, the Co,Cldistance becomes longer by 0.2 Å. These observations,along with the crystal structure of 2, suggest that the multiply-bonded MM group has a trans influence on the Co2+ ion.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


A Polymer-Bound Oxidovanadium(IV) Complex Prepared from an L -Cysteine-Derived Ligand for the Oxidative Amination of Styrene

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 4 2008
Mannar R. Maurya
Abstract The ligand H2sal-cys (I) derived from salicylaldehyde and L -cysteine has been covalently bonded to chloromethylated polystyrene cross-linked with 5,% divinylbenzene. Upon treatment with [VO(acac)2] in dimethylformamide (DMF) the polystyrene-bound ligand PS-H2sal-cys (II) gave the oxidovanadium(IV) complex, PS-[VO(sal-cys)·DMF] (1). The corresponding neat complex, [VO(sal-eta)]2 (2), has also been prepared similarly in methanol. These complexes have been characterised by IR, electronic, EPR spectroscopic studies, magnetic susceptibility measurements and thermal as well as scanning electron micrographs studies. Complex [VO(sal-eta)]2 exhibits a medium intensity band at 980 cm,1 in the IR spectrum due to ,(V=O) stretch. Broad features of the EPR spectrum for the neat complex along with magnetic susceptibility studies suggest the presence of antiferromagnetic exchange interaction between two vanadium centers in close proximity. Both complexes catalyze the oxidative amination of styrene, in mild basic conditions, with secondary amines (diethylamine, imidazole, and benzimidazole) and gave a mixture of two aminated products in good yields. Amongst the two aminated products, the anti-Markovnikov product is favored over the Markovnikov one due to the steric hindrance posed by the secondary amines. The polymer-anchored heterogeneous catalyst is free from leaching during catalytic action and recyclable.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


Tetrahedral CoII Complexes with CoI2O2 and CoO2S2 Cores , Crystal Structures of [Co{HN(OPPh2)(SPPh2)- O}2I2] and [Co{N(OPPh2)(SPPh2)- O,S}2]

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 29 2007
M. Carla Aragoni
Abstract The compound [CoII{HN(OPPh2)(SPPh2)- O}2I2] (1) was synthesised by the reaction of cobalt in powder with the iodine adduct of tetraphenylthiooxoimidodiphosphinic acid, HN(OPPh2)(SPPh2), in Et2O; treatment of compound 1 with NaOH resulted in deprotonation of the ligands bound to the metal ion and a separation of [CoII{N(OPPh2)(SPPh2)- O,S}2] (2). Molecular structures of complexes 1 and 2 were elucidated by X-ray diffraction analysis, which revealed a CoI2O2 tetrahedral core for compound 1 in which two neutral ligands bind through the oxygen atoms the CoII ion, and a tetrahedral CoO2S2 core for compound 2 with the oxygen and sulfur atoms of each anionic ligand chelating a CoII centre. Variable-temperature magnetic susceptibility measurements are consistent with tetrahedral high-spin (S = 3/2) CoII that possesses a 4A2 ground state with best fit parameters g = 2.25, |D| = 12.0 cm,1 and g = 2.37, |D| = 11.9 cm,1 for complexes 1 and 2, respectively. The compounds were further characterised by UV/Vis and IR spectroscopy. DFT calculations were performed on model complexes [CoII{N(OPH2)(SPH2)- O,S}2] (3) and [CoII{N(SPH2)2 - S,S,}2] (4) to compare the electronic properties of the CoO2S2 and CoS4 cores. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


The Thermal Decomposition of Three Magnetic Acetates at Their Autogenic Pressure Yields Different Products.

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 14 2007

Abstract We report on the one-stage, reproducible, solvent-free, competent and straightforward approach for the synthesis of fullerene-like Ni@C, Co@C, and Fe3O4@C core-shell nanostructures that can be scaled up. The single precursor reactions of low cost acetates of Fe, Co and Ni are separately conducted at a relatively low temperature (700 °C) in a closed Swagelok reactor, as compared to other methods for the formation of graphitic layers. It is worth mentioning that although identical reaction parameters are employed, using the three acetate precursors, the graphitic carbon is coated on nanosized metallic Ni and Co cores, while Fe tends to form Fe3O4, maintaining the same core-shell morphology. The systematic morphological, compositional, structural characterization and the room temperature magnetic susceptibility measurements of the as-made particles are carried out on a vibrating sample magnetometer. The plausible mechanism is based on the comparison between the dissociation products of three acetate precursors, their obtained experimental data, and calculations on the enthalpy and free energy changes.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


Hybrid Magnetic Materials Based on Nitroxide Free Radicals and Extended Oxalato-Bridged Bimetallic Networks

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 2 2005
Antonio Alberola
Abstract A series of hybrid organic-inorganic magnets of formula p -rad[MIICr(ox)3] [M = Mn (1), Co (2), Ni (3), Zn (4)] and m -rad[MIICr(ox)3] [M = Mn (5), Co (6)], in which N -methylpyridinium cations bearing a nitronyl nitroxide moiety in positions 3 (m -rad) or 4 (p -rad) of the pyridine ring coexist with the 2D honeycomb-like oxalato-bridged bimetallic lattice, has been prepared and studied by AC and DC magnetic susceptibility measurements and EPR spectroscopy. In general, the physical properties of these magnets are not altered significantly by the insertion of the nitronyl nitroxide radicals although these paramagnetic molecules seem to interact weakly with the inorganic network as demonstrated by EPR spectroscopy. Some differences can also be observed between the p -rad and m -rad series, i.e. m -rad derivatives have smaller values for the critical temperatures and coercive fields. We also report on the X-ray crystal structures and magnetic properties of p -rad[Mn(H2O)Cr(ox)3]·2H2O (7) and m -rad[Mn(H2O)2Cr(ox)3]·2H2O (8), two extended oxalato-bridged compounds with new topologies. Compound 7 is antiferromagnetic and its structure is a 3D achiral lattice in which zigzag ferromagnetic MnCr chains (J/k = +0.8 K) are interconnected to form hellicoidal hexagonal channels with the cationic free radicals residing in the free space. Compound 8, however, exhibits a ladder-like structural pattern with competing magnetic interactions and paramagnetic behaviour down to low temperatures. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


Syntheses, Structures, and Magnetic Properties of Copper(II) Complexes with 1,3-[Bis(2-pyridylmethyl)amino]benzene (1,3-tpbd) as Ligand

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 2 2004
Simon P. Foxon
Abstract The dinuclear copper(II) complexes {[Cu2(1,3-tpbd)(H2O)(OAc)2](ClO4)2}0.23{[Cu2(1,3-tpbd)(H2O)2(OAc)](ClO4)3}0.77·0.77H2O (1), [Cu2(1,3-tpbd)(H2O)2(OAc)2](ClO4)2·2H2O (2), and the tetranuclear copper(II) complex [Cu4(1,3-tpbd)2(H2O)2(SO4)4]·8H2O (3) {1,3-tpbd = 1,3-bis[bis(2-pyridylmethyl)amino]benzene} were synthesised and structurally characterised by X-ray diffraction. Variable-temperature (2.0,290 K) magnetic susceptibility measurements on these complexes as well as on the dinuclear copper(II) complex [Cu2(1,3-tpbd)(H2O)2(ClO4)3]ClO4 (4) (whose structure was published earlier) were performed. In contrast to 2 and 3, significant ferromagnetic coupling with J = +9.3 cm,1 was observed for 4 (the Hamiltonian being defined as H, = ,J S,1·S,2). Density functional theory (DFT) calculations were used successfully for the interpretation of the ferromagnetic coupling observed in 4. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]


Great Framework Variation of Polymers in the Manganese(II) Maleate/,,,,-Diimine System: Syntheses, Structures, and Magneto-Structural Correlation

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 15 2003
Chengbing Ma
Abstract Three novel manganese(II) coordination polymers, [Mn (maleate)(phen)]n (1; phen = 1,10-phenanthroline), [Mn(maleate)(phen)]n·nH2O (2), and [Mn(maleate)(bpy)]n (3; bpy = 2,2,-bipyridine), have been synthesized by treatment of Mn2+ with maleic acid with participation of chelate diimine ligands, and have been identified by single-crystal X-ray diffraction to have either one-dimensional (1D) zigzag chain structures (1 and 2) or a two-dimensional (2D) sinuous layer structure (3). Each maleate dianion coordinates to three Mn centers, in different bridging modes (syn - anti in 1 and 2, syn - syn and anti - anti in 3). These compounds represent an interesting example of structural topology variation from 1D to 2D mediated by chemically similar auxiliary chelate ligands. Variable-temperature magnetic susceptibility measurements show weak anti-ferromagnetic exchange interactions between the adjacent MnII ions, with J = ,0.06 cm,1 (2) and J = ,1.3 cm,1, zJ, = ,0.27 cm,1 (3). The differences in the magnitudes of these coupling interactions agree well with the nature of the carboxylate-bridging coordination of maleate. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source]


Ferromagnetism in [Mn(Cp*)2]+ -Derived Complexes: the "Miraculous" Stacking in [Mn(Cp*)2][Ni(dmit)2]

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 15 2003
Christophe Faulmann
Abstract The synthesis and characterisation (X-ray structure and magnetism) of metal complexes (Ni, Au) with the [Mn(Cp*)2]+ cation and the dmit2, and dmid2, ligands are reported. [Mn(Cp*)2][Ni(dmit)2] (1) and [Mn(Cp*)2][Au(dmit)2] (2) exhibit the same structural arrangement, built on stacks of [Ni(dmit)2], pairs separated by two [Mn(Cp*)2]+ cations, showing a ···D+D+A,A,D+D+A,A,··· motif. On the contrary, the dmid2, derivative [Mn(Cp*)2][Ni(dmid)2]·CH3CN (3) exhibits a totally different structure, built on mixed layers composed of one [Ni(dmid)2], unit separated by two [Mn(Cp*)2]+ cations, showing a ···D+D+A,D+D+A,···motif. The layers are separated from each other by perpendicular [Ni(dmid)2], units and solvent molecules. Compound 2 exhibits antiferromagnetic interactions, whereas 1 and 3 exhibit ferromagnetic interactions at low temperature. Moreover, as confirmed by AC and DC magnetic susceptibility measurements, 1 is a ferrimagnet, the first ever derived from a 1,2-bis-dithiolene ligand. The ferromagnetic interactions in 1 and 3 are explained using the McConnell I mechanism. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source]


Single-Atom O -Bridged Urea in a Dinickel(II) Complex together with NiII4, CuII2 and CuII4 Complexes of a Pentadentate Phenol-Containing Schiff Base with (O,N,O,N,O)-Donor Atoms

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 5 2003
Soumen Mukherjee
Abstract A pentadentate phenol-containing ligand (H3L) with N2O3 donor atoms yields NiII2 (1), NiII4 (2), CuII2 (3) and CuII4 (4) complexes, which have been structurally characterized by X-ray diffraction. Complex 1 contains a single-atom O -bridged urea. The compounds were characterized by IR, UV/Vis, mass spectrometry, electrochemistry and variable-temperature (2,295 K) magnetic susceptibility measurements. Analysis of the susceptibility data shows antiferromagnetic interactions between the metal centers indicating a diamagnetic ground state for complexes 1, 3 and 4, whereas complex 2, a tetranuclear NiII cubane, has a complicated low-lying magnetic structure with a non-diamagnetic ground state. A plot of J vs. Ni,O,Ni angles for all structurally characterized Ni4O4 cubane cores, including 2, irrespective of their symmetry exhibits a large variation of J values within a small range of Ni,O,Ni angles. The electrochemistry of all complexes was investigated in detail and the ligand-centered oxidation to a radical-ligand is inferred from the occurrence of oxidation processes at potentials which are similar. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source]


Detection of diluted marine tertiary tephra by electron spin resonance and magnetic measurements

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2003
B. Ananou
SUMMARY Oligocene sediments from ODP leg 115 (South Indian Ocean), Site 709 and Site 711, have been investigated using electron spin resonance (ESR) and magnetic susceptibility measurements, to detect volcanic tephra layers of supposed Ethiopian traps origin. The results obtained at room temperature, without separating the volcanic material from the bulk sediment, show that the ash-content strongly influences the lineshape and intensity of the ESR signal. As a result, the ESR alone, can be used as a powerful tool for characterizing the diluted ash-content of marine sediments. We have also found a strong similarity between the ESR spectra of the same tephra layers from the two sites. [source]


New tin(IV) complexes with sterically hindered o -iminobenzoquinone ligand: Synthesis and structure

HETEROATOM CHEMISTRY, Issue 6 2009
Alexandr V. Piskunov
The reduction of 4,6-di-tert-butyl-N-(2, 6-di-iso-propylphenyl)-o-iminobenzoquinone (imQ) by tin amalgam in hexane solution leads to new six-coordinated o-iminoquinonato tin(IV) complex (iSQ)2SnAP (1) (where iSQ and AP are o-iminosemiquinolate and dianion o-amidophenolate, respectively). Variable temperature magnetic susceptibility measurements of 1 have shown that this complex possesses a weak ferromagnetic exchange between o-iminosemiquinonate ligands. The oxidation of 1 with air oxygen produces new o-iminoquinonolate tin(IV) derivatives [(iSQ)Sn(AP)]2O (2) and (iSQ)2Sn(OH)2 (3) containing ,-oxo- and hydroxo-ligands, respectively. The electronic structure of 1 was examined by DFT analysis. Complexes 1,3 have been investigated using single-crystal X-ray diffraction. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:332,340, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20555 [source]


Antimicrobial activity studies of the metal complexes derived from cyclobutane-substituted thiazole carbamate ligands

HETEROATOM CHEMISTRY, Issue 7 2001
Alaaddin Çukuroval
Two novel monodentate carbamate ligands derived mainly from 4-(1-methyl-1-phenylcyclobutyl-3-yl)-2-aminothiazole and 4-(1-phenyl-1-methylcyclobutane-3-yl)-2-(N -methyl)aminothiazole, have been prepared. The ligands and their metal complexes have been characterized by elemental analyses, IR, 13C, and 1H NMR spectra, as well as UV,Vis, and magnetic susceptibility measurements. Both ligands contain 1 mole of water of crystallization and all complexes are mononuclear. Antimicrobial activities of the ligands and their complexes have been screened against the Bacillus subtitis IMG 22 (bacteria), Micrococcus luteus LA 2971 (bacteria), Escherichia coli DM (bacteria), Staphylococcus aureus COWAN I (bacteria), Saccharamyces cerevisiae UGA 102 (yeast), and Candida albicans CCM 314 (yeast). Thermal properties of the ligands and their complexes have been studied by thermogravimetric analyses (TGA) and differential scanning calorimetry (DSC). © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:665,670, 2001 [source]


Preparation of novel polyindene/polyoxymethylene blends and investigation of their properties

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2010
Tenzile Zilhan Cabuk
Abstract In this study, the conducting homopolymer of indene was synthesized by a chemical polymerization method in a nonaqueous medium, and polyindene (PIn)/polyoxymethylene (POM) blends were prepared. The physical, chemical, thermal, and spectral properties of the synthesized homopolymer and their blends were investigated. The conductivities of PIn and the PIn/POM blends were measured with a four-probe technique. The conductivity of PIn was determined as 1.16 × 10,5 S/cm, whereas the conductivities of the PIn/POM blends were determined to be in the range 3.16 × 10,6 to 9.8 × 10,6 S/cm. From Gouy scale magnetic susceptibility measurements, we found that PIn and the PIn/POM blends had polaron natures. The amount of Fe (milligrams per gram) in the PIn and PIn/POM structures were determined by inductively coupled plasma,optic emission spectrometry. Fourier transform infrared spectra were taken to analyze the structural properties of PIn and the PIn/POM blends. The thermal properties of PIn and PIn/POM blends were investigated with thermogravimetric analysis and differential scanning calorimetry analyses, and we found that they showed adequate thermal stability. According to the initial decomposition temperature among the blends, the blend including 16% PIn had the highest decomposition temperature with 244°C. The morphological structures of the PIn, POM, and blends were clarified with scanning electron microscopy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Encapsulation of magnetic self-assembled systems in thermoreversible gels

MACROMOLECULAR SYMPOSIA, Issue 1 2003
Jean-Michel Guenet
Abstract We describe two different ways of encapsulating within the fibrils of thermoreversible polymer gels the filaments of a supermolecular polymer formed by self-assembly of a bicopper complex. Heterogeneous nucleation is brought about with gels made from isotactic poly(styrene) while compound formation occurs with gels made from poly(hexyl isocyanate). These ways depend upon the interaction between the wings of the supermolecular polymer and the side groups of the polymer. In all cases, the filaments retain their 1-D structure. Preliminary results from magnetic susceptibility measurements show a striking difference between the pure and the encapsulated supermolecular polymer. [source]


In situ identification, pairing, and classification of meteorites from Antarctica through magnetic susceptibility measurements

METEORITICS & PLANETARY SCIENCE, Issue 3 2006
Luigi Folco
Magnetic susceptibility measurements carried out with a pocket meter (SM30) during the 2003/04 PNRA meteorite collection expedition to northern Victoria Land (Antarctica) proved to be a rapid, sensitive, non-destructive means for the in situ identification, pairing, and classification of meteorites. In blue ice fields characterized by the presence of moraines and glacial drifts (e.g., Miller Butte, Roberts Butte, and Frontier Mountain), magnetic susceptibility measurements allowed discrimination of meteorites from abundant terrestrial stones that look like meteorites thanks to the relatively high magnetic susceptibility of the former with respect to terrestrial rocks. Comparative measurements helped identify 16 paired fragments found at Johannessen Nunataks, thereby reducing unnecessary duplication of laboratory analyses and statistical bias. Following classifications schemes developed by us in this and previous works, magnetic susceptibility measurements also helped classify stony meteorites directly in the field, thereby providing a means for selecting samples with higher research priority. A magnetic gradiometer capable of detecting perturbations in the Earth's magnetic field induced by the presence of meteorites was an efficient tool for locating meteorites buried in snow along the downwind margin of the Frontier Mountain blue ice field. Based on these results, we believe that magnetic sensors should constitute an additional payload for robotic search for meteorites on the Antarctic ice sheet and, by extension, on the surface of Mars where meteorite accumulations are predicted by theoretical works. Lastly, magnetic susceptibility data was successfully used to crosscheck the later petrographic classification of the 123 recovered meteorites, allowing the detection of misclassified or peculiar specimens. [source]