Magnetic Resonance Imaging Contrast Agent (magnetic + resonance_imaging_contrast_agent)

Distribution by Scientific Domains


Selected Abstracts


Superparamagnetic Hyperbranched Polyglycerol-Grafted Fe3O4 Nanoparticles as a Novel Magnetic Resonance Imaging Contrast Agent: An In Vitro Assessment

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2009
Liang Wang
Abstract Hyperbranched polyglycerol-grafted, magnetic Fe3O4 nanoparticles (HPG-grafted MNPs) are successfully synthesized by surface-initiated ring-opening multibranching polymerization of glycidol. Reactive hydroxyl groups are immobilized on the surface of 6,9,nm Fe3O4 nanoparticles via effective ligand exchange of oleic acid with 6-hydroxy caproic acid. The surface hydroxyl groups are treated with aluminum isopropoxide to form the nanosized macroinitiators. The successful grafting of HPG onto the nanoparticles is confirmed by infrared and X-ray photoelectron spectroscopy. The HPG-grafted MNPs have a uniform hydrodynamic diameter of (24.0,±,3.0) nm, and are very stable in aqueous solution, as well as in cell culture medium, for months. These nanoparticles have great potential for application as a new magnetic resonance imaging contrast agent, as evidenced by their lack of cytotoxicity towards mammalian cells, low uptake by macrophages, excellent stability in aqueous medium and magnetic fields, and favorable magnetic properties. Furthermore, the possibility of functionalizing the hydroxyl end-groups of the HPG with cell-specific targeting ligands will expand the range of applications of these MNPs. [source]


Nonblinking and Nonbleaching Upconverting Nanoparticles as an Optical Imaging Nanoprobe and T1 Magnetic Resonance Imaging Contrast Agent

ADVANCED MATERIALS, Issue 44 2009
Yong Il Park
Core/shell upconverting nanoparticles (UCNPs) of NaGdF4:Er3+,Yb3+/NaGdF4 (see figure) are shown to serve as a multimodal imaging probe that works for both background-free optical imaging and magnetic resonance imaging (MRI). The nonblinking and nonbleaching properties of UCNPs can contribute to minimization of possible artifacts in long-term imaging experiments. Owing to Gd3+ ions in the host matrix, contrast is enhanced in T1 -weighted MRI. [source]


Gadolinium-Conjugated Dendrimer Nanoclusters as a Tumor-Targeted T1 Magnetic Resonance Imaging Contrast Agent,

ANGEWANDTE CHEMIE, Issue 2 2010
Zhiliang Cheng Dr.
Halbschwergewichte: Chemisch vernetzte Dendrimernanocluster (DNCs) wurden als Plattform für die Herstellung von Kontrastmitteln für die Kernspintomographie entwickelt. Die sehr hohe Beladung mit Gadolinium führt dazu, dass der Tumor mit deutlich stärkerem Kontrast abgebildet wird (siehe Bild). [source]


Superparamagnetic Hyperbranched Polyglycerol-Grafted Fe3O4 Nanoparticles as a Novel Magnetic Resonance Imaging Contrast Agent: An In Vitro Assessment

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2009
Liang Wang
Abstract Hyperbranched polyglycerol-grafted, magnetic Fe3O4 nanoparticles (HPG-grafted MNPs) are successfully synthesized by surface-initiated ring-opening multibranching polymerization of glycidol. Reactive hydroxyl groups are immobilized on the surface of 6,9,nm Fe3O4 nanoparticles via effective ligand exchange of oleic acid with 6-hydroxy caproic acid. The surface hydroxyl groups are treated with aluminum isopropoxide to form the nanosized macroinitiators. The successful grafting of HPG onto the nanoparticles is confirmed by infrared and X-ray photoelectron spectroscopy. The HPG-grafted MNPs have a uniform hydrodynamic diameter of (24.0,±,3.0) nm, and are very stable in aqueous solution, as well as in cell culture medium, for months. These nanoparticles have great potential for application as a new magnetic resonance imaging contrast agent, as evidenced by their lack of cytotoxicity towards mammalian cells, low uptake by macrophages, excellent stability in aqueous medium and magnetic fields, and favorable magnetic properties. Furthermore, the possibility of functionalizing the hydroxyl end-groups of the HPG with cell-specific targeting ligands will expand the range of applications of these MNPs. [source]