Magnetic Nanostructures (magnetic + nanostructure)

Distribution by Scientific Domains


Selected Abstracts


Magnonics: Spin Waves on the Nanoscale

ADVANCED MATERIALS, Issue 28 2009
Sebastian Neusser
Abstract Magnetic nanostructures have long been in the focus of intense research in the magnetic storage industry. For data storage the nonvolatility of magnetic states is of utmost relevance. As information technology generates the need for higher and higher data-transfer rates, research efforts have moved to understand magnetization dynamics. Here, spin waves and their particle-like analog, magnons, are increasingly attracting interest. High-quality nanopatterned magnetic media now offer new ways to transmit and process information without moving electrical charges. This new functionality is enabled by spin waves. They are confined by novel functioning principles, which render them especially suitable to operate at the nanoscale. Magnonic crystals are expected to provide full control of spin waves, similarly to what photonic crystals already do for light. Combined with nonvolatility, multifunctional metamaterials might be formed. We report recent advances in this rapidly increasing research field called magnonics. [source]


Mesoporous Systems for the Preparation of Ordered Magnetic Nanowire Arrays,

ADVANCED ENGINEERING MATERIALS, Issue 4 2005
A. Eliseev
Some tendencies in data storage technologies based on magnetic nanostructures are discussed and a novel approach to anisotropic magnetic nanoparticles which can be used as an active components of magnetic storage media is proposed by the authors [source]


Ab-initio simulations of materials using VASP: Density-functional theory and beyond

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 13 2008
Jürgen Hafner
Abstract During the past decade, computer simulations based on a quantum-mechanical description of the interactions between electrons and between electrons and atomic nuclei have developed an increasingly important impact on solid-state physics and chemistry and on materials science,promoting not only a deeper understanding, but also the possibility to contribute significantly to materials design for future technologies. This development is based on two important columns: (i) The improved description of electronic many-body effects within density-functional theory (DFT) and the upcoming post-DFT methods. (ii) The implementation of the new functionals and many-body techniques within highly efficient, stable, and versatile computer codes, which allow to exploit the potential of modern computer architectures. In this review, I discuss the implementation of various DFT functionals [local-density approximation (LDA), generalized gradient approximation (GGA), meta-GGA, hybrid functional mixing DFT, and exact (Hartree-Fock) exchange] and post-DFT approaches [DFT + U for strong electronic correlations in narrow bands, many-body perturbation theory (GW) for quasiparticle spectra, dynamical correlation effects via the adiabatic-connection fluctuation-dissipation theorem (AC-FDT)] in the Vienna ab initio simulation package VASP. VASP is a plane-wave all-electron code using the projector-augmented wave method to describe the electron-core interaction. The code uses fast iterative techniques for the diagonalization of the DFT Hamiltonian and allows to perform total-energy calculations and structural optimizations for systems with thousands of atoms and ab initio molecular dynamics simulations for ensembles with a few hundred atoms extending over several tens of ps. Applications in many different areas (structure and phase stability, mechanical and dynamical properties, liquids, glasses and quasicrystals, magnetism and magnetic nanostructures, semiconductors and insulators, surfaces, interfaces and thin films, chemical reactions, and catalysis) are reviewed. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2008 [source]


3rd Workshop on Semiconductor Nanodevices and Nanostructured Materials (NanoSemiMat-3)

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue S2 2004
E. F. da Silva Jr.
The 3rd Workshop on Semiconductor Nanodevices and Nanostructured Materials (NanoSemiMat-3) took place in Salvador, Bahia, Brazil, 24,27 March 2004. The NanoSemiMat network is part of the Brazilian Initiative on Nanoscience and Nanotechnology (N&N). The papers include the following topics: Photodetectors, Lasers and LEDs, Porous Materials, New Materials, New Technologies, Molecular Technology and Interfaces, Nanostructured Materials and Nanobiotechnology. The presentations reflect theoretical and experimental research on nanostructured semiconductor materials such as III,V and II,VI, Si and SiC based nanodevices, wide gap materials, ceramics, polymers, porous materials, optical and transport properties of low-dimensional structures, magnetic nanostructures and structures under the influence of high fields, spintronics and sensor applications. This issue is devoted to Prof. J. R. Leite, Sao Paulo, former Regional Editor of physica status solidi and Guest Editor in memoriam of the present Proceedings. [source]


Preface: phys. stat. sol. (c) 1/S2

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue S2 2004
E. F. da Silva Jr.
The papers in this special issue of physica status solidi (c) are selected manuscripts including diverse research lines presently in development in the ambit of the NanoSemiMat network in Brazil. The 3rd Workshop on Semiconductor Nanodevices and Nanostructured Materials (NanoSemiMat-3) took place in Salvador, Bahia, Brazil, at the Catussaba Resort Hotel, during the period of 24,27 March 2004. The NanoSemiMat network is part of the Brazilian Initiative on Nanoscience and Nanotechnology (N&N), with strategic cooperative research support in this area. The initiative started in 2001, through the formation of four research networks nationwide in different scientific fields associated to NanoScience and Nanotechnology (N&N). The 3rd Workshop on Nanodevices and Nanostructured Materials (NanoSemiMat-3) is an evolution of the two previous meetings which were held in Recife, PE, Brazil and Natal, RN, Brazil in 2002 and 2003, respectively. The meeting comprised 16 invited plenary talks, each 30 minutes long, given by eminent researchers from Brazil, Canada, France, Germany and the United States of America. These invited talks extend through different topics of N&N associated to Nanodevices and Nanostructured Materials: Photodetectors, Lasers and LEDs, Porous Materials, New Materials, and New Technologies, among others. There were short talks presented by representatives of the other N&N networks in Brazil dealing with Molecular Technology and Interfaces, Nanostructured Materials and Nanobiotechnology. Also a poster session, with about 60 presentations, highlighted the main research activities presently being developed by the network members at the different sites which constitute the NanoSemiMat network. The presentations reflected theoretical and experimental research lines which lead to the development of basic and applied research in nanostructured semiconductor materials such as III,V and II,VI, Si and SiC based nanodevices, wide gap materials, ceramics, polymers, porous materials, optical and transport properties of low dimensional structures, magnetic nanostructures and structures under the influence of high fields, spintronics and sensor applications. The participants of the workshop came from 20 research institutions within Brazil and from 7 research laboratories and universities in Europe and North America. In total about 120 researchers, members of the network, invited researchers, representatives of supporting and funding agencies in Brazil, undergraduate and graduate students, technical staff and supporting personal as well as researchers from complementary fields were present. The realization of the NanoSemiMat-3 was possible due to the financial support of the Brazilian Ministry of Science and Technology (MCT) and the Brazilian National Research Council (CNPq) and the logistic support of Federal University of Bahia. All activities during the NanoSemiMat-3 were open to the general public with interest in nanoscience and nanotechnology. In this third workshop of the series, we highlight the expansion of its format, with plenary and invited talks, poster sessions, as well as the presence of seven invited speakers from abroad. We expect that the continuation of the NanoSemiMat series will be a forum for discussions of state-of-the-art research developed in Brazil on N&N and the multidisciplinary field of semiconductor nanodevices and nanostructured materials as well as its superposition to other branches of science. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Iron oxide-based magnetic nanostructures bearing cytotoxic organosilicon molecules for drug delivery and therapy

APPLIED ORGANOMETALLIC CHEMISTRY, Issue 3 2010
Alla Zablotskaya
Abstract The results of our own investigation on synthesis, physico-chemical and biological study of iron oxide based magnetic nanoparticles bearing cytotoxic organosilicon molecules of choline and colamine analogues, as potential agents for antitumor therapy, are summarized. These molecules contain hydrophilic head and long lipophilic tails, which are able to deepen inside the first surfactant shell (oleic acid), forming bilayer membrane like structures. Such compositions have a great privilege possessing magnetic properties, which in some cases could be essential moment in targeted drug delivery. The methodological approach has been developed and applied to the preparation of water soluble single or mixed coated biologically active nanoparticles of different types. Copyright © 2010 John Wiley & Sons, Ltd. [source]