Home About us Contact | |||
Magmatic Rocks (magmatic + rock)
Selected AbstractsNoble gas and boron isotopic signatures of the Bacon-Manito geothermal fluid, PhilippinesGEOFLUIDS (ELECTRONIC), Issue 4 2008F. E. B. BAYON Abstract Noble gas isotopic composition and abundances were determined on dry gas sampled in geothermal wells from the Bacon-Manito (BGPF) geothermal field in the Philippines. The most significant findings come from the 3He/4He ratio; a mantle-He source is evidenced by ratio close to 7 Ra. Peripheral fluid from the west and south of the geothermal system is relatively enriched in 4He (R/Ra slightly > 2), most probably sourced from U and Th decay in old igneous or crustal rocks. The two end-members mix, producing the range of R/Ra ratios observed in the other wells included in this study. Preliminary data on the ,11B signature of the Bacon Manito fluid separated from vapour range from 7, to 9,. These values suggest that the local magmatic rocks could represent the main boron source, in agreement with the boron isotopic signature of Pacific arc lavas. [source] Petrogenetic modelling of strongly residual metapelitic xenoliths within the southern Platreef, Bushveld Complex, South AfricaJOURNAL OF METAMORPHIC GEOLOGY, Issue 3 2010T. E. JOHNSON Abstract Xenoliths of quartz-absent Fe-rich aluminous metapelite are common within the platinum group element-rich mafic/ultramafic magmatic rocks of the Platreef. Relative to well-characterized protoliths, the xenoliths are strongly depleted in K2O and H2O, and have lost a substantial amount of melt (>50 vol.%). Mineral equilibria calculations in the NCKFMASHTO system yield results that are consistent with observations in natural samples. Lower-grade rocks that lack staurolite constrain peak pressures to ,2.5 kbar in the southern Platreef. Smaller xenoliths and the margins of larger xenoliths comprise micro-diatexite rich in coarse acicular corundum and spinel, which record evidence for the metastable persistence of lower-grade hydrous phases and rapid melting consequent on a temperature overstep of several hundred degrees following their incorporation in the mafic/ultramafic magmas. In the cores of larger xenoliths, temperatures increased more slowly enabling progressive metamorphism by continuous prograde equilibration and the loss of H2O by subsolidus dehydration; the H2O migrated to xenolith margins where it may have promoted increased melting. According to variations in the original compositional layering, layers became aluminosilicate- and/or cordierite-rich, commonly with spinel but only rarely with corundum. The differing mineralogical and microstructural evolution of the xenoliths depends on heating rates (governed by their size and, therefore, proximity to the Platreef magmas) and the pre-intrusive metamorphic grade of the protoliths. The presence or absence of certain phases, particularly corundum, is strongly influenced by the degree of metastable retention of lower-grade hydrates in otherwise identical protolith bulk compositions. The preservation of fine-scale compositional layering that is inferred to be relict bedding in xenolith cores implies that melt loss by compaction was extremely efficient. [source] Metamorphic phase relations in orthopyroxene-bearing granitoids: implication for high-pressure metamorphism and prograde melting in the continental crustJOURNAL OF METAMORPHIC GEOLOGY, Issue 4 2009S. K. BHOWMIK Abstract In this work, the factors controlling the formation and preservation of high-pressure mineral assemblages in the metamorphosed orthopyroxene-bearing metagranitoids of the Sandmata Complex, Aravalli-Delhi Mobile Belt (ADMB), northwestern India have been modelled. The rocks range in composition from farsundite through quartz mangerite to opdalite, and with varying K2O, Ca/(Ca + Na)rock and FeOtot + MgO contents. A two stage metamorphic evolution has been recorded in these rocks. An early hydration event stabilized biotite with or without epidote at the expense of magmatic orthopyroxene and plagioclase. Subsequent high-pressure granulite facies metamorphism (,15 kbar, ,800 °C) of these hydrated rocks produced two rock types with contrasting mineralogy and textures. In the non-migmatitic metagranitoids, spectacular garnet ± K-feldspar ± quartz corona was formed around reacting biotite, plagioclase, quartz and/or pyroxene. In contrast, biotite ± epidote melting produced migmatites, containing porphyroblastic garnet incongruent solids and leucosomes. Applying NCKFMASHTO T,M(H2O) and P,T pseudosection modelling techniques, it is demonstrated that the differential response of these magmatic rocks to high-pressure metamorphism is primarily controlled by the scale of initial hydration. Rocks, which were pervasively hydrated, produced garnetiferous migmatites, while for limited hydration, the same metamorphism formed sub-solidus garnet-bearing coronae. Based on the sequence of mineral assemblage evolution and the mineral compositional zoning features in the two metagranitoids, a clockwise metamorphic P,T path is constrained for the high-pressure metamorphic event. The finding has major implications in formulating geodynamic model of crustal amalgamation in the ADMB. [source] Crystallization of Silicate Magmas Deciphered Using Crystal Size DistributionsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 3 2007Bruce D. Marsh The remoteness and inhospitable nature of natural silicate magma make it exceedingly difficult to study in its natural setting deep beneath volcanoes. Although laboratory experiments involving molten rock are routinely performed, it is the style and nature of crystallization under natural conditions that is important to understand. This is where the crystal size distributions (CSD) method becomes fundamentally valuable. Just as chemical thermodynamics offers a quantitative macroscopic means of investigating chemical processes that occur at the atomic level, crystal size distribution theory quantitatively relates the overall observed spectrum of crystal sizes to both the kinetics of crystallization and the physical processes affecting the population of crystals themselves. Petrography, which is the qualitative study of rock textures, is the oldest, most comprehensively developed, and perhaps most beautiful aspect of studying magmatic rocks. It is the ultimate link to the kinetics of crystallization and the integrated space,time history of evolution of every magma. CSD analysis offers a quantitative inroad to unlocking and quantifying the observed textures of magmatic rocks. Perhaps the most stunning feature of crystal-rich magmatic rocks is that the constituent crystal populations show smooth and often quasi-linear log-normal distributions of negative slope when plotted as population density against crystal size. These patterns are decipherable using CSD theory, and this method has proven uniquely valuable in deciphering the kinetics of crystallization of magma. The CSD method has been largely developed in chemical engineering by Randolph and Larson,1,2 among many others, for use in understanding industrial crystallization processes, and its introduction to natural magmatic systems began in 1988. The CSD approach is particularly valuable in its ease of application to complex systems. It is an aid to classical kinetic theory by being, in its purest form, free of any atomistic assumptions regarding crystal nucleation and growth. Yet the CSD method provides kinetic information valuable to understanding the connection between crystal nucleation and growth and the overall cooling and dynamics of magma. It offers a means of investigating crystallization in dynamic systems, involving both physical and chemical processes, independent of an exact kinetic theory. The CSD method applied to rocks shows a systematic and detailed history of crystal nucleation and growth that forms the foundation of a comprehensive and general model of magma solidification. [source] Lead Isotopic Composition and Lead Source in the Bainiuchang Ag-polymetallic Deposit, Yunnan Province, ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2008ZHU Chaohui Abstract The Bainiuchang deposit in Yunnan Province, China, is located geographically between the Gejiu ore field and the Dulong ore field. In addition to the >7000 t Ag reserves, the deposit also boasts of large-scale Pb, Zn and Sn reserves with a lot of dispersed elements (In, Cd, Ge, Ga, etc.). We have determined systematically the Pb isotope composition of the deposit. The Pb isotope ratios of the ores that are of sea-floor exhalative sedimentary origin in the northwest of the mining district, are 206Pb/204Pb = 17.758-18.537, 207Pb/204Pb = 15.175-15.862 and 208Pb/204Pb = 37.289-39.424, while those of ores that are of magmatic hydrothermal superimposition origin in the southeast of the mining district, are 206Pb/204Pb = 17.264-18.359, 207Pb/204Pb = 14.843-15.683 and 208Pb/204Pb = 36.481-38.838, respectively. In terms of the Pb isotope composition of feldspar in magmatic rocks or magmatic whole-rock samples from the mining district, we have determined the Pb isotope composition and acquired the Pb isotope ratios as: 206Pb/204Pb = 18.224-18.700, 207Pb/204Pb = 15.595-15.797 and 208Pb/204Pb = 38.193-39.608. Then, in the light of the Pb isotope composition of metamorphic rock samples from the Proterozoic basement exposed in the Dulong ore field, we have determined the Pb isotope composition and obtained the isotope ratios as: 206Pb/204Pb = 18.434-19.119, 207Pb/204Pb = 15.644-15.693, and 208Pb/204Pb = 38.514-38.832. And the Pb isotope ratios of Cambrian sedimentary rocks, which are exposed in the Bainiuchang mining district, are 206Pb/204Pb = 18.307-19.206, 207Pb/204Pb = 15.622-15.809, and 208Pb/204Pb = 38.436-39.932. By comparing the two types of ores with respect to their Pb isotope compositions, it is indicated that lead in the Bainiuchang deposit was derived largely from the lower-crust granulite which is earlier than Neoproterozoic in age, but the Yanshanian magmatic hydrothermal fluids probably provided a part of ore-forming elements such as Sn for the ore blocks in the south of the mining district. [source] |