Magmatic Activity (magmatic + activity)

Distribution by Scientific Domains


Selected Abstracts


Collision Tectonics between the Tarim Block (Basin) and the Northwestern Tibet Plateau: New Observations from a Multidisciplinary Geoscientific Investigation in the Western Kunlun Mountains

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2001
XIAO Xuchang
Abstract New results from deep seismic reflection profiling, wide-angle reflection-refraction profiling and broadband seismic experiments reveal that a series of south-dipping reflectors occur on the southern margin of the Tarim block (basin). However, it is these south-dipping structures that are intercepted by another series of north-dipping reflectors at depths from 30 to about 150 km beneath the foreland of the W Kunlun Mountains. No evidence from the above geophysical data as well as geochemical and surface geological data indicate the southward subduction of the Tarim block beneath the W Kunlun Mountains (NW Tibet plateau), forming the so-called "two-sided subduction" model for the Tibet plateau as proposed by previous studies. So the authors infer that the tectonic interaction between the Tarim block and the W Kunlun block was chiefly affected by a "horizontal compression in opposite directions", which brought about "face-to-face contact" between these two lithospheric blocks and led to the thickening, shortening and densifying of the lithosphere. Hence a "delamination" was formed due to the gravitational instability created by the thickening and densifying; then alkaline basic volcanic rocks (mainly shoshonite series) was erupted along the northern margin of the Tibet plateau owing to the delamination. This inference for the formation of the alkaline basic volcanics has been confirmed by recent geochemical and petrological studies in Tibet, indicating that different contacts control different magmatic activities: the alkali basalts are always developed in the "horizontal shortening boundary (contact)" on the northern margin of the Tibet plateau, while the muscovite granite and two-mica granite (leucogranite) in the "subductional contact" on the southern margin of the Tibet plateau. [source]


HYDROTHERMALLY FLUORITIZED ORDOVICIAN CARBONATES AS RESERVOIR ROCKS IN THE TAZHONG AREA, CENTRALTARIM BASIN, NW CHINA

JOURNAL OF PETROLEUM GEOLOGY, Issue 1 2006
Zhijun Jin
Reservoir rocks at the Tazhong 45 oil pool, central Tarim Basin, consist of fluoritized carbonate strata of Middle - Late Ordovician age. Petrological observations indicate that the fluorite replaces calcite. Several other hydrothermal minerals including pyrite, quartz, sphalerite and chlorite accompany the fluorite. Two generations of fluid inclusions are present in the fluorite. Homogenization temperatures (Th) for primary inclusions are mostly between 260°C and 310°C and represent the temperature of the hydrothermal fluid responsible for fluorite precipitation. Th for secondary inclusions range from 100°C to 130°C, and represent the hydrocarbon charging temperature as shown by the presence of hydrocarbons trapped in some secondary inclusions. The mineral assemblage and the homogenization temperatures of the primary fluid inclusions indicate that the precipitation of fluorite is related to hydrothermal activity in the Tazhong area. Strontium isotope analyses imply that the hydrothermal fluids responsible for fluorite precipitation are related to late-stage magmatic activity, and felsic magmas were generated by mixing of mafic magma and crustal materials during the Permian. Theoretical calculations show that the molecular volume of a carbonate rock decreases by 33.5% when calcite is replaced by fluorite, and the volume shrinkage can greatly enhance reservoir porosity by the formation of abundant intercrystalline pores. Fluoritization has thus greatly enhanced the reservoir quality of Ordovician carbonates in the Tazhong 45 area, so that the fluorite and limestone host rocks have become an efficient hydrocarbon reservoir. According to the modelled burial and thermal history of the Tazhong 45 well, and the homogenization temperatures of secondary fluid inclusions in the fluorite, hydrocarbon charging at the Tazhong 45 reservoir took place in the Tertiary. [source]


Neoproterozoic Tectonic Setting of Southeast China: New Constraints from SHRIMP U-Pb Zircon Ages and Petrographic Studies on the Mamianshan Group

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2010
Ganguo WU
Abstract: Precambrian tectonic history of Zhejiang, Fujian, and Jiangxi provinces of south China is important for understanding the tectonic evolution of South China but its magmatic activity, petrogenesis, stratigraphic sequence of the Mamianshan Group is still strongly controversial. Here we present new sensitive high resolution ion micro-probe (SHRIMP) U-Pb zircon geochronological data for the Mamianshan Group and petrographical data to constrain the tectonic framework of the regions. Our results showed that the SHRIMP U-Pb zircon age of green schists of the Dongyan Formation is 796.544.3 Ma, the Daling Formation is 756.2±7.2 Ma, and mica-quartz schist of the Longbeixi Formation is 825.5±9.8 Ma. These data indicate that the Mamianshan Group was formed not in the Mesoproterozoic, but in the Neoproterozoic and its stratigraphic sequences should be composed of Longbeixi, Dongyan, and Daling Formations from the bottom to the top. Rocks from this Group, from Zhejiang, Fujian and Jiangxi provinces, constituted the upper basement of the Cathaysia Block that overlay the lower basement of the Mayuan Group. Detailed petrographic studies demonstrate that the amphibole schists of the Dongyan Formation in the Mamianshan Group were formed within an intra-arc rift setting rather than a continental rift as previously suggested. Rather, this island-arc type formation was developed by collision and/or subduction between various blocks resulting from the breakup of the supercontinent Rodinia at c.850,750 Ma. The Zhuzhou conglomerate, distributed near Dikou Town, Jian'ou City, Fujian Province and previously considered as evidence of the Mesoproterozoic Dikou movement, is shown here not to be the basal conglomerate above the angular unconformity between the upper and lower basements. Our conclusions have important implications for understanding the Precambrian tectonics of South China. [source]


Magmatic Event at the End of the Archean in Eastern Hebei Province and Its Geological Implication

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 6 2006
GENG Yuansheng
Abstract: By using the SHRIMP U-Pb and single zircon stepwise evaporation methods, the authors have obtained some results for granitoids from eastern Hebei Province. The Yuhuzhai hyperthene tonalitic granite was formed 2550 Ma ago, the Qingyangshu gabbroic gneiss 2536 Ma, the Yinmahe granodioritic gneiss near Lücao, Lulong County, 2533 Ma, the gabbro-dioritic gneiss near Longwan, Qianxi County, 2518-2515 Ma, the Qiuhuayu trondjemitic gneiss at Zunhua 2515 Ma, the Xiaoguanzhuang tonalitic gneiss at Zunhua 2495 Ma, and the Cuizhangzi gneiss in Qianxi County 2492 Ma. These geochronilogical data demonstrate that, though diverse in composition, type and origin, the granitic gneisses in eastern Hebei Province were emplaced and crystallized in a rather short period of magmatic activity. The formation of such a great amount of gneisses in this small time gap suggests that it was a critical crust accretion stage at the end of Neoarchean. The fact that granitoids of various types occurred at the same time implies a large-scale underplating (mantle plume) activity, which was then responsible for the crust accretion. [source]


Formation Laws of Inorganic Gas Pools in the Northern Jiangsu Basin

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2000
ZHOU Liqing
Abstract, In the Northern Jiangsu basin there are high pure CO2 gas pools, low condensed oil-containing CO2 gas pools, high condensed oil-containing CO2 gas pools and He-containing natural gas pools, with the ,13Cco2 (PDB) values ranging from ,2.87%o to ,6.50%o, 3He/4He 3.71 × 10,6 to 6.42 × 10,6, R/Ra 2.64 to 4.5, 40Ar/36Ar 705 to 734, belonging to typical mantle source inorganic gas pools which are related to young magmatic activity. The gas layers occur in two major reservoir-caprock systems, the terrestrial Meso-Cenozoic clastic rock system and the marine Meso-Palaeozoic carbonate rock-clastic rock system. Controlled by the difference in the scale of traps in the two reservoir-caprock systems, large and medium-scale inorganic gas pools are formed in the marine Meso-Palaeozoic Group and only small ones are formed in the terrestrial Meso-Cenozoic strata. Inorganic gas pools in this basin are distributed along the two deep lithospheric faults on the west and south boundaries of the basin. Gas pools are developed at the intersected part of the ENE-trending faults that control the half graben and the E-W tenso-shear faults, mainly distributed near the Es1, Ny1 and Ny2 -Q basalt eruption centres. [source]