Home About us Contact | |||
Mafic Granulites (mafic + granulite)
Selected AbstractsContinental basalts in the accretionary complexes of the South-west Japan Arc: Constraints from geochemical and Sr and Nd isotopic data of metadiabaseISLAND ARC, Issue 1 2000Hiroo Kagami Abstract The Ryoke Belt is one of the important terranes in the South-west Japan Arc (SJA). It consists mainly of late Cretaceous granitoid rocks, meta-sedimentary rocks (Jurassic accretionary complexes) and mafic rocks (gabbros, metadiabases; late Permian,early Jurassic). Initial ,Sr (+ 25, + 59) and ,Nd (, 2.1,,5.9) values of the metadiabases cannot be explained by crustal contamination but reflect the values of the source material. These values coincide with those of island arc basalt (IAB), active continental margin basalt (ACMB) and continental flood basalt (CFB). Spiderdiagrams and trace element chemistries of the metadiabases have CFB-signature, rather than those of either IAB or ACMB. The Sr,Nd isotope data, trace element and rare earth element chemistries of the metadiabases indicate that they result from partial melting of continental-type lithospheric mantle. Mafic granulite xenoliths in middle Miocene volcanic rocks distributed throughout the Ryoke Belt were probably derived from relatively deep crust. Their geochemical and Sr,Nd isotopic characteristics are similar to the metadiabases. This suggests that rocks, equivalent geochemically to the metadiabases, must be widely distributed at relatively deep crustal levels beneath a part of the Ryoke Belt. The geochemical and isotopic features of the metadiabases and mafic granulites from the Ryoke Belt are quite different from those of mafic rocks from other terranes in the SJA. These results imply that the Ryoke mafic rocks (metadiabase, mafic granulite) were not transported from other terranes by crustal movement but formed in situ. Sr,Nd isotopic features of late Cretaceous granitoid rocks occurring in the western part of the Japanese Islands are coincident with those of the Ryoke mafic rocks. Such an isotopic relation between these two rocks suggests that a continental-type lithosphere is widely represented beneath the western part of the Japanese Islands. [source] Palaeoproterozoic high-pressure granulite overprint of the Archean continental crust: evidence for homogeneous crustal thickening (Man Rise, Ivory Coast)JOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2010P. PITRA Abstract The character of mountain building processes in Palaeoproterozoic times is subject to much debate. Based on the discovery of high-pressure granulites in the Man Rise (Côte d'Ivoire), several authors have argued that Eburnean (Palaeoproterozoic) reworking of the Archean basement was achieved by modern-style thrust-dominated tectonics. A mafic granulite of the Kouibli area (Archean part of the Man Rise, western Ivory Coast) displays a primary assemblage (M1) containing garnet, diopsidic clinopyroxene, red-brown pargasitic amphibole, plagioclase (andesine), rutile, ilmenite and quartz. This assemblage is associated with a subvertical regional foliation. Symplectites that developed at the expense of the M1 assemblage contain orthopyroxene, clinopyroxene, plagioclase (bytownite), green pargasitic amphibole, ilmenite and magnetite (M2). Multiequilibrium thermobarometric calculations and P,T pseudosections calculated with thermocalc suggest granulite facies conditions of , 13 kbar, 850 °C and <7 kbar, 700,800 °C for M1 and M2, respectively. In agreement with the qualitative information obtained from reaction textures and chemical zoning of minerals, this suggests an evolution dominated by decompression accompanied by moderate cooling. A Sm,Nd garnet , whole-rock age of 2.03 Ga determined on this sample indicates that this evolution occurred during the Palaeoproterozoic. It is argued that from the geodynamic point of view the observed features are best explained by homogeneous thickening of the margin of the Archean craton, re-heated and softened due to the accretion of hot, juvenile Palaeoproterozoic crust, as well as coeval intrusion of juvenile magmas. Crustal shortening was mainly accommodated by transpressive shear zones and by lateral crustal spreading rather than large-scale thrust systems. [source] Ultrahigh-pressure eclogite transformed from mafic granulite in the Dabie orogen, east-central ChinaJOURNAL OF METAMORPHIC GEOLOGY, Issue 9 2007Y.-C. LIU Abstract Although ultrahigh-pressure (UHP) metamorphic rocks are present in many collisional orogenic belts, almost all exposed UHP metamorphic rocks are subducted upper or felsic lower continental crust with minor mafic boudins. Eclogites formed by subduction of mafic lower continental crust have not been identified yet. Here an eclogite occurrence that formed during subduction of the mafic lower continental crust in the Dabie orogen, east-central China is reported. At least four generations of metamorphic mineral assemblages can be discerned: (i) hypersthene + plagioclase ± garnet; (ii) omphacite + garnet + rutile + quartz; (iii) symplectite stage of garnet + diopside + hypersthene + ilmenite + plagioclase; (iv) amphibole + plagioclase + magnetite, which correspond to four metamorphic stages: (a) an early granulite facies, (b) eclogite facies, (c) retrograde metamorphism of high-pressure granulite facies and (d) retrograde metamorphism of amphibolite facies. Mineral inclusion assemblages and cathodoluminescence images show that zircon is characterized by distinctive domains of core and a thin overgrowth rim. The zircon core domains are classified into two types: the first is igneous with clear oscillatory zonation ± apatite and quartz inclusions; and the second is metamorphic containing a granulite facies mineral assemblage of garnet, hypersthene and plagioclase (andesine). The zircon rims contain garnet, omphacite and rutile inclusions, indicating a metamorphic overgrowth at eclogite facies. The almost identical ages of the two types of core domains (magmatic = 791 ± 9 Ma and granulite facies metamorphic zircon = 794 ± 10 Ma), and the Triassic age (212 ± 10 Ma) of eclogitic facies metamorphic overgrowth zircon rim are interpreted as indicating that the protolith of the eclogite is mafic granulite that originated from underplating of mantle-derived magma onto the base of continental crust during the Neoproterozoic (c. 800 Ma) and then subducted during the Triassic, experiencing UHP eclogite facies metamorphism at mantle depths. The new finding has two-fold significance: (i) voluminous mafic lower continental crust can increase the average density of subducted continental lithosphere, thus promoting its deep subduction; (ii) because of the current absence of mafic lower continental crust in the Dabie orogen, delamination or recycling of subducted mafic lower continental crust can be inferred as the geochemical cause for the mantle heterogeneity and the unusually evolved crustal composition. [source] Corundum-bearing mafic granulites in the Horoman (Japan) and Ronda (Spain) Peridotite Massifs: Possible remnants of recycled crustal materials in the mantleISLAND ARC, Issue 1 2006Tomoaki Morishita No abstract is available for this article. [source] Continental basalts in the accretionary complexes of the South-west Japan Arc: Constraints from geochemical and Sr and Nd isotopic data of metadiabaseISLAND ARC, Issue 1 2000Hiroo Kagami Abstract The Ryoke Belt is one of the important terranes in the South-west Japan Arc (SJA). It consists mainly of late Cretaceous granitoid rocks, meta-sedimentary rocks (Jurassic accretionary complexes) and mafic rocks (gabbros, metadiabases; late Permian,early Jurassic). Initial ,Sr (+ 25, + 59) and ,Nd (, 2.1,,5.9) values of the metadiabases cannot be explained by crustal contamination but reflect the values of the source material. These values coincide with those of island arc basalt (IAB), active continental margin basalt (ACMB) and continental flood basalt (CFB). Spiderdiagrams and trace element chemistries of the metadiabases have CFB-signature, rather than those of either IAB or ACMB. The Sr,Nd isotope data, trace element and rare earth element chemistries of the metadiabases indicate that they result from partial melting of continental-type lithospheric mantle. Mafic granulite xenoliths in middle Miocene volcanic rocks distributed throughout the Ryoke Belt were probably derived from relatively deep crust. Their geochemical and Sr,Nd isotopic characteristics are similar to the metadiabases. This suggests that rocks, equivalent geochemically to the metadiabases, must be widely distributed at relatively deep crustal levels beneath a part of the Ryoke Belt. The geochemical and isotopic features of the metadiabases and mafic granulites from the Ryoke Belt are quite different from those of mafic rocks from other terranes in the SJA. These results imply that the Ryoke mafic rocks (metadiabase, mafic granulite) were not transported from other terranes by crustal movement but formed in situ. Sr,Nd isotopic features of late Cretaceous granitoid rocks occurring in the western part of the Japanese Islands are coincident with those of the Ryoke mafic rocks. Such an isotopic relation between these two rocks suggests that a continental-type lithosphere is widely represented beneath the western part of the Japanese Islands. [source] Petrology and P,T path of the Fuping mafic granulites: implications for tectonic evolution of the central zone of the North China cratonJOURNAL OF METAMORPHIC GEOLOGY, Issue 4 2000G. C. Zhao The Fuping Complex and the adjoining Wutai and Hengshan Complexes are located in the central zone of the North China craton. The dominant rock types in the Fuping Complex are high-grade tonalitic,trondhjemitic,granodioritic (TTG) gneisses, with minor amounts of mafic granulites, syntectonic granitic rocks and supracrustal rocks. The petrological evidence from the mafic granulites indicates three stages of metamorphic evolution. The M1 stage is represented by garnet porphyroblasts and matrix plagioclase, quartz, orthopyroxene, clinopyroxene and hornblende. Orthopyroxene+plagioclase symplectites and clinopyroxene+plagioclase±orthopyroxene coronas formed in response to decompression during M2 following the peak metamorphism at M1. Hornblende+plagioclase symplectites formed as a result of further isobaric cooling and retrograde metamorphism during M3. The P,T estimates using TWQ thermobarometry are: 900,950 °C and 8.0,8.5 kbar for the peak assemblage (M1), based on the core compositions of garnet, matrix pyroxene and plagioclase; 700,800 °C and 6.0,7.0 kbar for the pyroxene+plagioclase symplectites or coronas (M2); and 550,650 °C and 5.3,6.3 kbar for the hornblende+plagioclase symplectites (M3), based on garnet rim and corresponding symplectic mineral compositions. These P,T estimates define a clockwise P,T path involving near-isothermal decompression for the Fuping Complex, similar to the P,T path estimated for the metapelitic gneisses. The inferred P,T path suggests that the Fuping Complex underwent initial crustal thickening, subsequent exhumation, and finally cooling and retrogression. This tectonothermal path is similar to P,T paths inferred for the Wutai and Hengshan Complexes and other tectonic units in the central zone of the North China craton, but different from anti-clockwise P,T paths estimated for the basement rocks in the eastern and western zones of the craton. Based on lithological, structural, metamorphic and geochronological data, the eastern and western zones of the craton are considered to represent two different Archean to Paleoproterozoic continental blocks that amalgamated along the central zone at the end of Paleoproterozoic. The P,T paths of the Fuping Complex and other tectonic units in the central zone record the collision between the eastern and western zones that led to the final assembly of the North China craton at c. 1800 Ma. [source] What Happened in the Trans-North China Orogen in the Period 2560-1850 Ma?ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 6 2006Guochun ZHAO Abstract: The Trans-North China Orogen (TNCO) was a Paleoproterozic continent-continent collisional belt along which the Eastern and Western Blocks amalgamated to form a coherent North China Craton (NCC). Recent geological, structural, geochemical and isotopic data show that the orogen was a continental margin or Japan-type arc along the western margin of the Eastern Block, which was separated from the Western Block by an old ocean, with eastward-directed subduction of the oceanic lithosphere beneath the western margin of the Eastern Block. At 2550-2520 Ma, the deep subduction caused partial melting of the medium-lower crust, producing copious granitoid magma that was intruded into the upper levels of the crust to form granitoid plutons in the low- to medium-grade granite-greenstone terranes. At 2530-2520 Ma, subduction of the oceanic lithosphere caused partial melting of the mantle wedge, which led to underplating of mafic magma in the lower crust and widespread mafic and minor felsic volcanism in the arc, forming part of the greenstone assemblages. Extension driven by widespread mafic to felsic volcanism led to the development of back-arc and/or intra-arc basins in the orogen. At 2520-2475 Ma, the subduction caused further partial melting of the lower crust to form large amounts of tonalitic-trondhjemitic-granodioritic (TTG) magmatism. At this time following further extension of back-arc basins, episodic granitoid magmatism occurred, resulting in the emplacement of 2360 Ma, ,2250 Ma 2110,21760 Ma and ,2050 Ma granites in the orogen. Contemporary volcano-sedimentary rocks developed in the back-arc or intra-arc basins. At 2150-1920 Ma, the orogen underwent several extensional events, possibly due to subduction of an oceanic ridge, leading to emplacement of mafic dykes that were subsequently metamorphosed to amphibolites and medium- to high-pressure mafic granulites. At 1880-1820 Ma, the ocean between the Eastern and Western Blocks was completely consumed by subduction, and the closing of the ocean led to the continent-arc-continent collision, which caused large-scale thrusting and isoclinal folds and transported some of the rocks into the lower crustal levels or upper mantle to form granulites or eclogites. Peak metamorphism was followed by exhumation/uplift, resulting in widespread development of asymmetric folds and symplectic textures in the rocks. [source] |