Home About us Contact | |||
mTOR
Terms modified by mTOR Selected AbstractsResistance exercise increases leg muscle protein synthesis and mTOR signalling independent of sexACTA PHYSIOLOGICA, Issue 1 2010H. C. Dreyer Abstract Aim:, Sex differences are evident in human skeletal muscle as the cross-sectional area of individual muscle fibres is greater in men than in women. We have recently shown that resistance exercise stimulates mammalian target of rapamycin (mTOR) signalling and muscle protein synthesis in humans during early post-exercise recovery. Therefore, the aim of this study was to determine if sex influences the muscle protein synthesis response during recovery from resistance exercise. Methods:, Seventeen subjects, nine male and eight female, were studied in the fasted state before, during and for 2 h following a bout of high-intensity leg resistance exercise. Mixed muscle protein fractional synthetic rate was measured using stable isotope techniques and mTOR signalling was assessed by immunoblotting from repeated vastus lateralis muscle biopsy samples. Results:, Post-exercise muscle protein synthesis increased by 52% in the men and by 47% in the women (P < 0.05) and was not different between groups (P > 0.05). Akt phosphorylation increased in both groups at 1 h post-exercise (P < 0.05) and returned to baseline during 2 h post-exercise with no differences between groups (P > 0.05). Phosphorylation of mTOR and its downstream effector S6K1 increased significantly and similarly between groups during post-exercise recovery (P < 0.05). eEF2 phosphorylation decreased at 1- and 2 h post-exercise (P < 0.05) to a similar extent in both groups. Conclusion:, The contraction-induced increase in early post-exercise mTOR signalling and muscle protein synthesis is independent of sex and appears to not play a role in the sexual dimorphism of leg skeletal muscle in young men and women. [source] LKB1 and AMP-activated protein kinase control of mTOR signalling and growthACTA PHYSIOLOGICA, Issue 1 2009R. J. Shaw Abstract The AMP-activated serine/threonine protein kinase (AMPK) is a sensor of cellular energy status found in all eukaryotes that is activated under conditions of low intracellular ATP following stresses such as nutrient deprivation or hypoxia. In the past 5 years, work from a large number of laboratories has revealed that one of the major downstream signalling pathways regulated by AMPK is the mammalian target-of-rapamycin [mammalian target of rapamycin (mTOR) pathway]. Interestingly, like AMPK, the mTOR serine/threonine kinase plays key roles not only in growth control and cell proliferation but also in metabolism. Recent work has revealed that across eukaryotes mTOR orthologues are found in two biochemically distinct complexes and only one of those complexes (mTORC1 in mammals) is acutely sensitive to rapamycin and regulated by nutrients and AMPK. Many details of the molecular mechanism by which AMPK inhibits mTORC1 signalling have also been decoded in the past 5 years. AMPK directly phosphorylates at least two proteins to induce rapid suppression of mTORC1 activity, the TSC2 tumour suppressor and the critical mTORC1 binding subunit raptor. Here we explore the molecular connections between AMPK and mTOR signalling pathways and examine the physiological processes in which AMPK regulation of mTOR is critical for growth or metabolic control. The functional conservation of AMPK and TOR in all eukaryotes, and the sequence conservation around the AMPK phosphorylation sites in raptor across all eukaryotes examined suggest that this represents a fundamental cell growth module connecting nutrient status to the cell growth machinery. These findings have broad implications for the control of cell growth by nutrients in a number of cellular and organismal contexts. [source] Androgen replacement therapy improves function in male rat muscles independently of hypertrophy and activation of the Akt/mTOR pathwayACTA PHYSIOLOGICA, Issue 4 2009C. Hourdé Abstract Aim:, We analysed the effect of physiological doses of androgens following orchidectomy on skeletal muscle and bone of male rats, as well as the relationships between muscle performance, hypertrophy and the Akt/mammalian target of rapamycin (mTOR) signalling pathway involved in the control of anabolic and catabolic muscle metabolism. Methods:, We studied the soleus muscle and tibia from intact rats (SHAM), orchidectomized rats treated for 3 months with vehicle (ORX), nandrolone decanoate (NAN) or dihydrotestosterone (DHT). Results:, Orchidectomy had very little effect on the soleus muscle. However, maximal force production by soleus muscle (+69%) and fatigue resistance (+35%) in NAN rats were both increased when compared with ORX rats. In contrast, DHT treatment did not improve muscle function. The relative number of muscle fibres expressing slow myosin heavy chain and citrate synthase activity were not different in NAN and ORX rats. Moreover, NAN and DHT treatments did not modify muscle weights and cross-sectional area of muscle fibres. Furthermore, phosphorylation levels of downstream targets of the Akt/mTOR signalling pathway, Akt, ribosomal protein S6 and eukaryotic initiation factor 4E-binding protein 1 were similar in muscles of NAN, DHT and ORX rats. In addition, trabecular tibia from NAN and DHT rats displayed higher bone mineral density and bone volume when compared with ORX rats. Only in NAN rats was this associated with increased bone resistance to fracture. Conclusion:, Physiological doses of androgens are beneficial to muscle performance in orchidectomized rats without relationship to muscle and fibre hypertrophy and activation of the Akt/mTOR signalling pathway. Taken together our data clearly indicate that the activity of androgens on muscle and bone could participate in the global improvement of musculoskeletal status in the context of androgen deprivation induced by ageing. [source] Cellular oxygen sensing, signalling and how to survive translational arrest in hypoxiaACTA PHYSIOLOGICA, Issue 2 2009M. Fähling Abstract Hypoxia is a consequence of inadequate oxygen availability. At the cellular level, lowered oxygen concentration activates signal cascades including numerous receptors, ion channels, second messengers, as well as several protein kinases and phosphatases. This, in turn, activates trans -factors like transcription factors, RNA-binding proteins and miRNAs, mediating an alteration in gene expression control. Each cell type has its unique constellation of oxygen sensors, couplers and effectors that determine the activation and predominance of several independent hypoxia-sensitive pathways. Hence, altered gene expression patterns in hypoxia result from a complex regulatory network with multiple divergences and convergences. Although hundreds of genes are activated by transcriptional control in hypoxia, metabolic rate depression, as a consequence of reduced ATP level, causes inhibition of mRNA translation. In a multi-phase response to hypoxia, global protein synthesis is suppressed, mainly by phosphorylation of eIF2-alpha by PERK and inhibition of mTOR, causing suppression of 5,-cap-dependent mRNA translation. Growing evidence suggests that mRNAs undergo sorting at stress granules, which determines the fate of mRNA as to whether being translated, stored, or degraded. Data indicate that translation is suppressed only at ,free' polysomes, but is active at subsets of membrane-bound ribosomes. The recruitment of specific mRNAs into subcellular compartments seems to be crucial for local mRNA translation in prolonged hypoxia. Furthermore, ribosomes themselves may play a significant role in targeting mRNAs for translation. This review summarizes the multiple facets of the cellular adaptation to hypoxia observed in mammals. [source] Pretreatment with insulin before ischaemia reduces infarct size in Langendorff-perfused rat heartsACTA PHYSIOLOGICA, Issue 2 2009B. N. Fuglesteg Abstract Aim:, To compare the possible role of Akt and mammalian target of rapamycin (mTOR) in mediating cardioprotection against ischaemia under three different conditions: (1) During ischaemic preconditioning (IPC), (2) when insulin was given as a pretreatment agent (InsPC) and (3) when insulin was given as a reperfusion cell survival agent (InsR). Methods:, Isolated perfused rat hearts were subjected to IPC (3 × 5 min) or InsPC (50 mU mL,1; 3 × 5 min), before 30 min of regional ischaemia followed by 120 min of reperfusion ± 1L-6-hydroxymethyl- chiro -inositol-2 - [(R)-2- O -methyl-3- O -octadecylcarbonate] (HIMO) (20 ,m; Akt inhibitor) or rapamycin (1 nm; mTOR inhibitor). In addition, insulin (3 mU mL,1) was given at the onset of reperfusion, ±HIMO or rapamycin. Risk zone (R) and infarct size (I) were determined with Evans blue and tetrazolium staining respectively. Western blot analysis was performed on tissue from Langendorff-perfused rat hearts and cell lysates from cultured HL1 cells. Results:, IPC, InsPC and InsR treatment resulted in a significant reduction in infarct size compared to controls (all P < 0.05). This protective effect of IPC and insulin was abolished by the inhibitors. However, the putative Akt inhibitor, although capable of abolishing cardioprotection induced by insulin, was not able to inhibit insulin-induced phosphorylation of Akt in Langendorff-perfused rat hearts and cultured HL1 cells. The target for this compound therefore remains to be determined. Conclusion:, IPC and insulin (either as InsPC or InsR) appear to activate mTOR, and this kinase seems to play an essential role in cardioprotection against ischaemia and reperfusion injury as rapamycin blocked the protection. [source] Cell hydration and mTOR-dependent signallingACTA PHYSIOLOGICA, Issue 1-2 2006F. Schliess Abstract Insulin- and amino acid-induced signalling by the mammalian target of rapamycin (mTOR) involves hyperphosphorylation of the p70 ribosomal S6 protein kinase (p70S6-kinase) and the eukaryotic initiation factor 4E (eIF4E) binding protein 4E-BP1 and contributes to regulation of protein metabolism. This review considers the impact of cell hydration on mTOR-dependent signalling. Although hypoosmotic hepatocyte swelling in some instances activates p70S6-kinase, the hypoosmolarity-induced proteolysis inhibition in perfused rat liver is insensitive to mTOR inhibition by rapamycin. Likewise, swelling-dependent proteolysis inhibition by insulin and swelling-independent proteolysis inhibition by leucine, a potent activator of p70S6-kinase and 4E-BP1 hyperphosphorylation, in perfused rat liver is insensitive to rapamycin, indicating that at least rapamycin-sensitive mTOR signalling is not involved. Hyperosmotic dehydration in different cell types produces inactivation of signalling components around mTOR, thereby attenuating insulin-induced glucose uptake, glycogen synthesis, and lipogenesis in adipocytes, and MAP-kinase phosphatase MKP-1 expression in hepatoma cells. Direct inactivation of mTOR, stimulation of the AMP-activated protein kinase, and the destabilization of individual proteins may impair mTOR signalling under dehydrating conditions. Further investigation of the crosstalk between the mTOR pathway(s) and hyperosmotic signalling will improve our understanding about the contribution of cell hydration changes in health and disease and will provide further rationale for fluid therapy of insulin-resistant states. [source] Characterization of p70 S6 kinase 1 in early development of mouse embryosDEVELOPMENTAL DYNAMICS, Issue 12 2009Xiao-Yan Xu Abstract The mTOR kinase controls cell growth, proliferation, and survival through two distinct multiprotein complexes mTORC1 and mTORC2. p70 S6 Kinase 1 (S6K1) is characterized as downstream effector of mTOR. Until recently, the connection between S6K1 and mTORC1 /mTORC2 during the early development of mouse embryos has not been well elucidated. Here, the expression level of total S6K1 and its phosphorylation at Thr389 was determined in four phases of one-cell embryos. S6K1 was active throughout the cell cycle especially with higher activity in G2 and M phases. Rapamycin decreased the activity of M-phase promoting factor (MPF) and delayed the first mitotic cleavage. Down-regulating mTOR and raptor reduced S6K1 phosphorylation at Thr389 in one-cell embryos. Furthermore, rapamycin and microinjection of raptor shRNA decreased the immunofluorescent staining of Thr389 phospho-S6K1. It is proposed that mTORC1 may be involved in the control of MPF by regulating S6K1 during the early development of mouse embryos. Developmental Dynamics 238:3025,3034, 2009. © 2009 Wiley-Liss, Inc. [source] Balancing needs and means: the dilemma of the ,-cell in the modern worldDIABETES OBESITY & METABOLISM, Issue 2009G. Leibowitz The insulin resistance of type 2 diabetes mellitus (T2DM), although important for its pathophysiology, is not sufficient to establish the disease unless major deficiency of ,-cell function coexists. This is demonstrated by the fact that near-physiological administration of insulin (CSII) achieved excellent blood glucose control with doses similar to those used in insulin-deficient type 1 diabetics. The normal ,-cell adapts well to the demands of insulin resistance. Also in hyperglycaemic states some degree of adaptation does exist and helps limit the severity of disease. We demonstrate here that the mammalian target of rapamycin (mTOR) system might play an important role in this adaptation, because blocking mTORC1 (complex 1) by rapamycin in the nutritional diabetes model Psammomys obesus caused severe impairment of ,-cell function, increased ,-cell apoptosis and progression of diabetes. On the other hand, under exposure to high glucose and FFA (gluco-lipotoxicity), blocking mTORC1 in vitro reduced endoplasmic reticulum (ER) stress and ,-cell death. Thus, according to the conditions of stress, mTOR may have beneficial or deleterious effects on the ,-cell. ,-Cell function in man can be reduced without T2DM/impaired glucose tolerance (IGT). Prospective studies have shown subjects with reduced insulin response to present, several decades later, an increased incidence of IGT/T2DM. From these and other studies we conclude that T2DM develops on the grounds of ,-cells whose adaptation capacity to increased nutrient intake and/or insulin resistance is in the lower end of the normal variation. Inborn and acquired factors that limit ,-cell function are diabetogenic only in a nutritional/metabolic environment that requires high functional capabilities from the ,-cell. [source] Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cellsEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2008Frank Schmitz Abstract The mammalian target of rapamycin (mTOR) can be viewed as cellular master complex scoring cellular vitality and stress. Whether mTOR controls also innate immune-defenses is currently unknown. Here we demonstrate that TLR activate mTOR via phosphoinositide 3-kinase/Akt. mTOR physically associates with the MyD88 scaffold protein to allow activation of interferon regulatory factor-5 and interferon regulatory factor-7, known as master transcription factors for pro-inflammatory cytokine- and type I IFN-genes. Unexpectedly, inactivation of mTOR did not prevent but increased lethality of endotoxin-mediated shock, which correlated with increased levels of IL-1,. Mechanistically, mTOR suppresses caspase-1 activation, thus inhibits release of bioactive IL-1,. We have identified mTOR as indispensable component of PRR signal pathways, which orchestrates the defense program of innate immune cells. [source] mTOR as a potential therapeutic target for treatment of keloids and excessive scarsEXPERIMENTAL DERMATOLOGY, Issue 5 2007C. T. Ong Abstract:, Keloid is a dermal fibroproliferative disorder characterized by excessive deposition of extracellular matrix (ECM) components such as collagen, glycoproteins and fibronectin. The mammalian target of rapamycin (mTOR) is a serine/theronine kinase which plays an important role in the regulation of metabolic processes and translation rates. Published reports have shown mTOR as regulator of collagen expression and its inhibition induces a decrease in ECM deposition. Our aim was to investigate the role of mTOR in keloid pathogenesis and investigate the effect of rapamycin on proliferating cell nuclear antigen (PCNA), cyclin D1, collagen, fibronectin and alpha-smooth muscle actin (, -SMA) expression in normal fibroblasts (NF) and keloid fibroblasts (KF). Tissue extracts obtained from keloid scar demonstrated elevated expression of mTOR, p70KDa S6 kinase (p70S6K) and their activated forms, suggesting an activated state in keloid scars. Serum stimulation highlighted the heightened responsiveness of KF to mitogens and the importance of mTOR and p70S6K during early phase of wound healing. Application of rapamycin to monoculture NF and KF, dose- and time-dependently downregulates the expression of cytoplasmic PCNA, cyclin D1, fibronectin, collagen and , -SMA, demonstrating the anti-proliferative effect and therapeutic potential of rapamycin in the treatment of keloid scars. The inhibitory effect of rapamycin was found to be reversible following recovery in the expression of proteins following the removal of rapamycin from the culture media. These results demonstrate the important role of mTOR in the regulation of cell cycle and the expression of ECM proteins: fibronectin, collagen and , -SMA. [source] The phosphatidylinositol-3 kinase (PI3K)-Akt pathway suppresses neurite branch formation in NGF-treated PC12 cellsGENES TO CELLS, Issue 8 2003Maiko Higuchi Background:, Previous studies have shown that phosphatidylinositol-3 kinase (PI3K) plays an important role in NGF (nerve growth factor)-induced neurite elongation. However, the roles of the PI3K pathway in neurite branch formation were not fully understood. Also, it was not clear where the PI3K pathway is activated during branch formation. Results:, We found that the treatment of PC12 cells with the PI3K inhibitor LY294002 resulted in a marked increase in the number of neurite branch points, suggesting a suppressive role of PI3K in neurite branch formation. Expression of a constitutively active form of Akt, a downstream effector of PI3K, decreased the number of branch points, whereas that of a dominant-negative form of Akt increased it. In contrast, inhibition of neither Rac, mTOR nor GSK3, other effectors of PI3K, promoted branch formation. Importantly, the phosphorylated form of endogenous Akt was localized at the tips of growth cones, but devoid of small branches in NGF-treated PC12 cells. A GFP-fusion protein of the plekstrin-homology (PH) domain of Akt was also localized at the tips of growth cones. Conclusions:, The PI3K-Akt pathway thus plays a key role in suppression of neurite branch formation in NGF-treated PC12 cells. Summary figure, Figure Summary figure,. working model for the regulation of neuritogenesis in PC12 cells. PI3K may mediate NGF regulation of neuritogenesis via two pathways. Rac induces neurite elongation and branch formation. Akt induces neurite elongation, but prevents branch formation. [source] Rapamycin delays tumor development in murine livers by inhibiting proliferation of hepatocytes with DNA damage,HEPATOLOGY, Issue 2 2009Laura Elisa Buitrago-Molina In this study, everolimus (RAD001) was used to determine the role of mammalian target of rapamycin (mTOR) in hepatocarcinogenesis. We show that RAD001 effectively inhibits proliferation of hepatocytes during chronic liver injury. Remarkably, the ability of RAD001 to impair cell cycle progression requires activation of the DNA damage response; loss of p53 significantly attenuates the antiproliferative effects of mTOR inhibition. RAD001 modulates the expression of specific cell cycle,related proteins and the assembly of cyclin,cyclin-dependent kinase complexes to prevent cell cycle progression. Furthermore, RAD001 sustains the apoptosis sensitivity of hepatocytes during chronic liver injury by inhibiting p53-induced p21 expression. Long-term treatment with RAD001 markedly delays DNA damage,induced liver tumor development. Conclusion: We provide evidence that mTOR inhibition has a substantial effect on sequential carcinogenesis and may offer an effective strategy to delay liver tumor development in patients at risk. (HEPATOLOGY 2009;50:500,509.) [source] Immunosuppression using the mTOR inhibition mechanism affects replacement of rat liver with transplanted cells,HEPATOLOGY, Issue 2 2006Yao-Ming Wu Successful grafting of tissues or cells from mismatched donors requires systemic immunosuppression. It is yet to be determined whether immunosuppressive manipulations perturb transplanted cell engraftment or proliferation. We used syngeneic and allogeneic cell transplantation assays based on F344 recipient rats lacking dipeptidyl peptidase IV enzyme activity to identify transplanted hepatocytes. Immunosuppressive drugs used were tacrolimus (a calcineurin inhibitor) and its synergistic partners, rapamycin (a regulator of the mammalian target of rapamycin [mTOR]) and mycophenolate mofetil (an inosine monophosphate dehydrogenase inhibitor). First, suitable drug doses capable of inducing long-term survival of allografted hepatocytes were identified. In pharmacologically effective doses, rapamycin enhanced cell engraftment by downregulating hepatic expression of selected inflammatory cytokines but profoundly impaired proliferation of transplanted cells, which was necessary for liver repopulation. In contrast, tacrolimus and/or mycophenolate mofetil perturbed neither transplanted cell engraftment nor their proliferation. Therefore, mTOR-dependent extracellular and intracellular mechanisms affected liver replacement with transplanted cells. In conclusion, insights into the biological effects of specific drugs on transplanted cells are critical in identifying suitable immunosuppressive strategies for cell therapy. (HEPATOLOGY 2006;44:410,419.) [source] A gene-alteration profile of human lung cancer cell lines,HUMAN MUTATION, Issue 8 2009Raquel Blanco Abstract Aberrant proteins encoded from genes altered in tumors drive cancer development and may also be therapeutic targets. Here we derived a comprehensive gene-alteration profile of lung cancer cell lines. We tested 17 genes in a panel of 88 lung cancer cell lines and found the rates of alteration to be higher than previously thought. Nearly all cells feature inactivation at TP53 and CDKN2A or RB1, whereas BRAF, MET, ERBB2, and NRAS alterations were infrequent. A preferential accumulation of alterations among histopathological types and a mutually exclusive occurrence of alterations of CDKN2A and RB1 as well as of KRAS, epidermal growth factor receptor (EGFR), NRAS, and ERBB2 were seen. Moreover, in non-small-cell lung cancer (NSCLC), concomitant activation of signal transduction pathways known to converge in mammalian target of rapamycin (mTOR) was common. Cells with single activation of ERBB2, PTEN, or MET signaling showed greater sensitivity to cell-growth inhibition induced by erlotinib, LY294002, and PHA665752, respectively, than did cells featuring simultaneous activation of these pathways, underlining the need for combined therapeutic strategies in targeted cancer treatments. In conclusion, our gene-alteration landscape of lung cancer cell lines provides insights into how gene alterations accumulate and biological pathways interact in cancer. Hum Mutat 30,1,8, 2009. © 2009 Wiley-Liss, Inc. [source] Mammalian target of rapamycin is activated in human gastric cancer and serves as a target for therapy in an experimental modelINTERNATIONAL JOURNAL OF CANCER, Issue 8 2007Sven A. Lang Abstract The mammalian target of rapamycin (mTOR) has become an interesting target for cancer therapy through its influence on oncogenic signals, which involve phosphatidylinositol-3-kinase and hypoxia-inducible factor-1, (HIF-1,). Since mTOR is an upstream regulator of HIF-1,, a key mediator of gastric cancer growth and angiogenesis, we investigated mTOR activation in human gastric adenocarcinoma specimens and determined whether rapamycin could inhibit gastric cancer growth in mice. Expression of phospho-mTOR was assessed by immunohistochemical analyses of human tissues. For in vitro studies, human gastric cancer cell lines were used to determine S6K1, 4E-BP-1 and HIF-1, activation and cancer cell motility upon rapamycin treatment. Effects of rapamycin on tumor growth and angiogenesis in vivo were assessed in both a subcutaneous tumor model and in an experimental model with orthotopically grown tumors. Mice received either rapamycin (0.5 mg/kg/day or 1.5 mg/kg/day) or diluent per intra-peritoneal injections. In addition, antiangiogenic effects were monitored in vivo using a dorsal-skin-fold chamber model. Immunohistochemical analyses showed strong expression of phospho-mTOR in 60% of intestinal- and 64% of diffuse-type human gastric adenocarcinomas. In vitro, rapamycin-treatment effectively blocked S6K1, 4E-BP-1 and HIF-1, activation, and significantly impaired tumor cell migration. In vivo, rapamycin-treatment led to significant inhibition of subcutaneous tumor growth, decreased CD31-positive vessel area and reduced tumor cell proliferation. Similar significant results were obtained in an orthotopic model of gastric cancer. In the dorsal-skin-fold chamber model, rapamycin-treatment significantly inhibited tumor vascularization in vivo. In conclusion, mTOR is frequently activated in human gastric cancer and represents a promising new molecular target for therapy. © 2007 Wiley-Liss, Inc. [source] In vivo antitumor effect of the mTOR inhibitor CCI-779 and gemcitabine in xenograft models of human pancreatic cancerINTERNATIONAL JOURNAL OF CANCER, Issue 9 2006Daisuke Ito Abstract Mammalian target of rapamycin (mTOR) is considered to be a major effector of cell growth and proliferation that controls protein synthesis through a large number of downstream targets. We investigated the expression of the phosphatidylinositol 3,-kinase (PI3K)/mTOR signaling pathway in human pancreatic cancer cells and tissues, and the in vivo antitumor effects of the mTOR inhibitor CCI-779 with/without gemcitabine in xenograft models of human pancreatic cancer. We found that the Akt, mTOR and p70 S6 kinase (S6K1) from the PI3K/mTOR signaling pathway were activated in all of the pancreatic cancer cell lines examined. When surgically resected tissue specimens of pancreatic ductal adenocarcinoma were examined, phosphorylation of Akt, mTOR and S6K1 was detected in 50, 55 and 65% of the specimens, respectively. Although CCI-779 had no additive or synergistic antiproliferative effect when combined with gemcitabine in vitro, it showed significant antitumor activity in the AsPC-1 subcutaneous xenograft model as both a single agent and in combination with gemictabine. Furthermore, in the Suit-2 peritoneal dissemination xenograft model, the combination of these 2 drugs achieved significantly better survival when compared with CCI-779 or gemcitabine alone. These results demonstrate promising activity of the mTOR inhibitor CCI-779 against human pancreatic cancer, and suggest that the inhibition of mTOR signaling can be exploited as a potentially tumor-selective therapeutic strategy. © 2005 Wiley-Liss, Inc. [source] Enhanced cytotoxicity induced by gefitinib and specific inhibitors of the Ras or phosphatidyl inositol-3 kinase pathways in non-small cell lung cancer cellsINTERNATIONAL JOURNAL OF CANCER, Issue 1 2006Maarten L. Janmaat Abstract In this study, we have characterized a panel of NSCLC cell lines with differential sensitivity to gefitinib for activating mutations in egfr, pik3ca, and k-ras, and basal protein expression levels of PTEN. The egfr mutant NSCLC cell line H1650 as well as the egfr wild type cell lines H292 and A431 were highly sensitive to gefitinib treatment, indicating that other factors determine gefitinib-sensitivity in egfr wild type cells. Activating k-ras mutations were specifically detected in gefitinib-resistant cells, suggesting that the occurrence of k-ras mutations is correlated with resistance to EGFR antagonists. No pik3ca mutations were detected within the panel of cell lines, and PTEN protein expression levels did not correlate with gefitinib sensitivity. Gefitinib effectively blocked Akt and Erk phosphorylation in two gefitinib-sensitive NSCLC cell lines, further supporting our previous findings that persistent activity of the PI3K/Akt and/or Ras/Erk pathways is associated with gefitinib-resistance of NSCLC cell lines. Gefitinib-resistant NSCLC cell lines, showing EGFR-independent activity of the PI3K/Akt or Ras/Erk pathways, were treated with gefitinib in combination with specific inhibitors of mTOR, P13K, Ras, and MEK. Additive cytotoxicity was observed in A549 cells co-treated with gefitinib and the MEK inhibitor U0126 or the farnesyl transferase inhibitor SCH66336 and in H460 cells treated with gefitinib and the PI3K inhibitor LY294002, but not in H460 cells treated with gefitinib and rapamycin. These data suggest that combination treatment of NSCLC cells with gefitinib and specific inhibitors of the PI3K/Akt and Ras/Erk pathways may provide a successful strategy. © 2005 Wiley-Liss, Inc. [source] Inactivation of Pten in Osteo-Chondroprogenitor Cells Leads to Epiphyseal Growth Plate Abnormalities and Skeletal Overgrowth,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2007Alice Fiona Ford-Hutchinson Abstract To study the role of the Pten tumor suppressor in skeletogenesis, we generated mice lacking this key phosphatidylinositol 3,-kinase pathway regulator in their osteo-chondroprogenitors. A phenotype of growth plate dysfunction and skeletal overgrowth was observed. Introduction: Skeletogenesis is a complex process relying on a variety of ligands that activate a range of intracellular signal transduction pathways. Although many of these stimuli are known to activate phosphatidylinositol 3,-kinase (PI3K), the function of this pathway during cartilage development remains nebulous. To study the role of PI3K during skeletogenesis, we used mice deficient in a negative regulator of PI3K signaling, the tumor suppressor, Pten. Materials and Methods:Pten gene deletion in osteo-chondrodroprogenitors was obtained by interbreeding mice with loxP-flanked Pten exons with mice expressing the Cre recombinase under the control of the type II collagen gene promoter (Ptenflox/flox:Col2a1Cre mice). Phenotypic analyses included microcomputed tomography and immunohistochemistry techniques. Results: ,CT revealed that Ptenflox/flox:Col2a1Cre mice exhibited both increased skeletal size, particularly of vertebrae, and massive trabeculation accompanied by increased cortical thickness. Primary spongiosa development and perichondrial bone collar formation were prominent in Ptenflox/flox:Col2a1Cre mice, and long bone growth plates were disorganized and showed both matrix overproduction and evidence of accelerated hypertrophic differentiation (indicated by an altered pattern of type X collagen and alkaline phosphatase expression). Consistent with increased PI3K signaling, Pten-deficient chondrocytes showed increased phospho-PKB/Akt and phospho-S6 immunostaining, reflective of increased mTOR and PDK1 activity. Interestingly, no significant change in growth plate proliferation was seen in Pten-deficient mice, and growth plate fusion was found at 6 months. Conclusions: By virtue of its ability to modulate a key signal transduction pathway responsible for integrating multiple stimuli, Pten represents an important regulator of both skeletal size and bone architecture. [source] PKR, a cognitive decline biomarker, can regulate translation via two consecutive molecular targets p53 and Redd1 in lymphocytes of AD patientsJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 8b 2009Milena Damjanac Abstract In Alzheimer's disease (AD), the control of translation is dysregulated, precisely, two opposite pathways: double-stranded RNA-dependent protein kinase (PKR) is up-regulated and mammalian target of rapamycin (mTOR) is down-regulated. These biochemical alterations were found at the periphery in lymphocytes of AD patients and were significantly correlated with cognitive and memory test scores. However, the molecular crosslink between these two opposite signalling pathways remains unknown. The tumour suppressor p53 and Redd1 (regulated in development and DNA damage response) could be two downstream targets of active PKR to explain the breakdown of translation in AD patients. In this study, the protein and gene levels of p53 and Redd1 were assayed in lymphocytes of AD patients and in age-matched controls by Western blotting and RT-PCR. Furthermore, correlations were analysed with both the level of active PKR and the Mini Mental State Examination score (MMSE). The results show that the gene and protein levels of p53 and Redd1 were significantly increased about 1.5-fold for both gene and Redd1 protein and 2.3-fold for active p53 in AD lymphocytes compared to age-matched controls. Furthermore, statistical correlations between proteins and genes suggest that active PKR could phosphorylate p53 which could induce the transcription of Redd1 gene. No correlations were found between MMSE scores and levels of p53 or Redd1, contrary to active PKR levels. PKR represents a cognitive decline biomarker able to dysregulate translation via two consecutive targets p53 and Redd1 in AD lymphocytes. [source] Sorafenib and rapamycin induce growth suppression in mouse models of hepatocellular carcinomaJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 8b 2009Hung Huynh Abstract Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide. Vascular endothelial growth factor, platelet derived growth factor and the Raf/mitogen-activated protein kinase/extracellular signal regulated kinase (Raf/MEK/ERK) signalling pathway regulates the growth, neovascularization, invasiveness and metastatic potential of HCC. In this study, we investigated the in vivo antitumour activity and mechanisms of action of sorafenib tosylate on four patient-derived HCC xenografts. Sorafenib dosed at 50 mg/kg and 100 mg/kg inhibited tumour growth by 85% and 96%, respectively. Sorafenib-induced growth suppression and apoptosis were associated with inhibition of angiogenesis, down-regulation of phospho-platelet-derived growth factor receptor , Tyr1021, phospho-eIF4E Ser209, phospho-c-Raf Ser259, c-Raf, Mcl-1, Bcl-2, Bcl-x and positive cell cycle regulators, up-regulation of apoptosis signalling kinase-1, p27 and p21. Expression of IGF-1R, and phosphorylation of c-Raf Ser338, MEK1/2 Ser217/221 and ERK1/2 Thr202/Tyr204 were increased by sorafenib treatment. Phosphorylation of mammalian target-of-rapamycin (mTOR) targets (p70S6K, S6R and 4EBP1) was reduced by sorafenib in sorafenib-sensitive lines but activated in sorafenib-less-sensitive 10,0505 xenograft. Sorafenib-induced phosphorylation of c-met, p70S6K and 4EBP1 was significantly reduced when 10,0505 cells were co-treated with anti-human anti-HGF antibody, suggesting that treatment with sorafenib leads to increased HGF secretion and activation of c-met and mTOR targets. Treatment of 10,0505 tumours with sorafenib plus rapamycin resulted in growth inhibition, inhibition of vascular endothelial growth factor receptor-2 phosphorylation, increased apoptosis and completely blocked sorafenib-induced phosphorylation of mTOR targets and cyclin B1 expression. These data also provide a strong rationale for clinical investigation of sorafenib in combination with mTOR inhibitors in patients with HCC. [source] ,4 phosphoprotein interacts with EDD E3 ubiquitin ligase and poly(A)-binding proteinJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2010William J. McDonald Abstract Mammalian ,4 phosphoprotein, the homolog of yeast Tap42, is a component of the mammalian target-of-rapamycin (mTOR) pathway that regulates ribogenesis, the initiation of translation, and cell-cycle progression. ,4 is known to interact with the catalytic subunit of protein phosphatase 2A (PP2Ac) and to regulate PP2A activity. Using ,4 as bait in yeast two-hybrid screening of a human K562 erythroleukemia cDNA library, EDD (E3 isolated by differential display) E3 ubiquitin ligase was identified as a new protein partner of ,4. EDD is the mammalian ortholog of Drosophila hyperplastic discs gene (hyd) that controls cell proliferation during development. The EDD protein contains a PABC domain that is present in poly(A)-binding protein (PABP), suggesting that PABP may also interact with ,4. PABP recruits translation factors to the poly(A)-tails of mRNAs. In the present study, immunoprecipitation/immunoblotting (IP/IB) analyses showed a physical interaction between ,4 and EDD in rat Nb2 T-lymphoma and human MCF-7 breast cancer cell lines. ,4 also interacted with PABP in Nb2, MCF-7 and the human Jurkat T-leukemic and K562 myeloma cell lines. COS-1 cells, transfected with Flag-tagged-pSG5-EDD, gave a (Flag)-EDD,,4 immunocomplex. Furthermore, deletion mutants of ,4 were constructed to determine the binding site for EDD. IP/IB analysis showed that EDD bound to the C-terminal region of ,4, independent of the ,4-PP2Ac binding site. Therefore, in addition to PP2Ac, ,4 interacts with EDD and PABP, suggesting its involvement in multiple steps in the mTOR pathway that leads to translation initiation and cell-cycle progression. J. Cell. Biochem. 110: 1123,1129, 2010. Published 2010 Wiley-Liss, Inc. [source] Epac1-induced cellular proliferation in prostate cancer cells is mediated by B-Raf/ERK and mTOR signaling cascadesJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2009Uma Kant Misra Abstract cAMP-dependent, PKA-independent effects on cell proliferation are mediated by cAMP binding to EPAC and activation of Rap signaling. In this report, we employed the analogue 8-CPT-2-O-Me-cAMP to study binding to EPAC and subsequent activation of B-Raf/ERK and mTOR signaling in human cancer cells. This compound significantly stimulated DNA synthesis, protein synthesis, and cellular proliferation of human 1-LN prostate cancer cells. By study of phosphorylation-dependent activation, we demonstrate that EPAC-mediated cellular effects require activation of the B-Raf/ERK and mTOR signaling cascades. RNAi directed against EPAC gene expression as well as inhibitors of ERK, PI 3-kinase, and mTOR were employed to further demonstrate the role of these pathways in regulating prostate cancer cell proliferation. These studies were then extended to several other human prostate cancer cell lines and melanoma cells with comparable results. We conclude that B-Raf/ERK and mTOR signaling play an essential role in cAMP-dependent, but PKA-independent, proliferation of cancer cells. J. Cell. Biochem. 108: 998,1011, 2009. © 2009 Wiley-Liss, Inc. [source] AMP-activated protein kinase enhances the expression of muscle-specific ubiquitin ligases despite its activation of IGF-1/Akt signaling in C2C12 myotubesJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2009Jun F. Tong Abstract Two muscle-specific ubiquitin ligases (UL), muscle atrophy F box (MAFbx) and muscle RING finger 1 (MuRF1), are crucial for myofibrillar protein breakdown. The insulin like growth factor-1 (IGF-1) pathway inhibits muscle UL expression through Akt-mediated inhibition of FoxO transcription factors, while AMP-activated protein kinase (AMPK) promotes UL expression. The underlying cellular mechanism, however, remains obscure. In this study, the effect of AMPK and its interaction with IGF-1 on ubiquitin ligases expression was investigated. C2C12 myotubes were treated with 0, 0.1, 0.3, and 1.0,mM 5-aminoimidazole-4-carboxamide-1-,- D -ribofuranoside (AICAR) in the presence or absence of 50,ng/ml IGF-1. IGF-1 activated Akt, which enhanced phosphorlytion of FoxO3a at Thr 318/321 and reduced the expression of UL. Intriguingly, though activation of AMPK by 0.3 and 1.0,mM AICAR synergized IGF-1-induced Akt activation, the expression of UL was not attenuated, but strengthened by AMPK activation. AICAR treatment decreased FoxO3a phosphorylation at 318/321 in the cytoplasm and induced FoxO3 nuclear relocation. mTOR inhibition increased basal MAFbx expression and reversed the inhibitory effect of IGF-1 on UL expression. In conclusion, our data show that AMPK activation by AICAR stimulates UL expression despite the activation of Akt signaling, which may be due to the possible antagonistic effect of FoxO phosphorylation by AMPK on phosphorylation by Akt. In addition, AMPK inhibition of mTOR may provide an additional explanation for the enhancement of UL expression by AMPK. J. Cell. Biochem. 108: 458,468, 2009. © 2009 Wiley-Liss, Inc. [source] Phosphorylated osteopontin promotes migration of human choriocarcinoma cells via a p70 S6 kinase-dependent pathwayJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2005Rania Al-Shami Abstract This study examined the role of osteopontin (OPN), a phosphorylated secreted glycoprotein, in the promotion of trophoblastic cell migration, an early event in the embryo implantation process. Three human choriocarcinoma cell lines, namely JAR, BeWo, and JEG-3, were treated with variants of OPN differing in the extent of phosphorylation following sequential dephosphorylation with tartrate-resistant acid phosphatase (TRAP), and their migratory response was measured. The highly phosphorylated human milk form of OPN (OPN-1) strongly triggered migration in all three cell lines, whereas the less phosphorylated variants, OPN-2a and OPN-2b, failed to stimulate migration. JAR cell migration in response to OPN-1 was accompanied by a rapid rearrangement of actin filaments to the cellular membrane. Using broad spectrum protein kinase profiling, we identified p70 S6 kinase as a major signal transduction pathway activated by OPN-1 during the migratory response in JAR cells. Activation was blocked completely by rapamycin and LY294002, thus demonstrating that OPN-1-stimulated migration occurs through mTOR and PI3K pathways, respectively. Conversely, PD98059 did not affect the activation of p70 S6 kinase by OPN-1, therefore, this response does not involve the Ras/ MAPK signaling cascade. Together, these data show that the highly phosphorylated human OPN-1 can stimulate trophoblastic cell migration and provides evidence for the involvement of the PI3K/mTOR/p70 S6 kinase pathway in the JAR cells response. Because both OPN and TRAP are expressed in the uterus during early pregnancy, it is conceivable that extracellular phosphatases such as TRAP may modify OPN charge state and thus modulate cell migration. © 2005 Wiley-Liss, Inc. [source] Rapamycin impairs trabecular bone acquisition from high-dose but not low-dose intermittent parathyroid hormone treatmentJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2009P.J. Niziolek The osteo-anabolic effects of intermittent parathyroid hormone (PTH) treatment require insulin-like growth factor (IGF) signaling through the IGF-I receptor. A major downstream target of the IGF-I receptor (via Akt) is the mammalian target of rapamycin (mTOR), a kinase involved in protein synthesis. We investigated whether the bone-building effects of intermittent PTH require functional mTOR signaling. Mice were treated with daily PTH 1,34 (0, 10, 30, or 90,µg/kg) for 6 weeks in the presence or absence of rapamycin, a selective inhibitor of mTOR. We found that all PTH doses were effective in enhancing bone mass, whether rapamycin was present or not. Rapamycin had little to no effect on the anabolic response at low (10,µg) PTH doses, small effects in a minority of anabolic measures at moderate doses (30,µg), but the anabolic effects of high-dose PTH (90,µg) were consistently and significantly suppressed by rapamycin (,4,36% reduction). Serum levels of Trap5b, a marker of resorption, were significantly enhanced by rapamycin, but these effects were observed whether PTH was absent or present. Our data suggest that intermittent PTH, particularly at lower doses, is effective in building bone mass in the presence of rapamycin. However, the full anabolic effects of higher doses of PTH are significantly suppressed by rapamycin, suggesting that PTH might normally activate additional pathways (including mTOR) for its enhanced high-dose anabolic effects. Clinical doses of intermittent PTH could be an effective treatment for maintaining or increasing bone mass among patients taking rapamycin analogs for unrelated health issues. J. Cell. Physiol. 221: 579,585, 2009. © 2009 Wiley-Liss, Inc. [source] Recent advances in vertebrate aging research 2009AGING CELL, Issue 3 2010Steven Austad Summary Among the notable trends seen in this year's highlights in mammalian aging research is an awakening of interest in the assessment of age-related measures of mouse health in addition to the traditional focus on longevity. One finding of note is that overexpression of telomerase extended life and improved several indices of health in mice that had previously been genetically rendered cancer resistant. In another study, resveratrol supplementation led to amelioration of several degenerative conditions without affecting mouse lifespan. A primate dietary restriction (DR) study found that restriction led to major improvements in glucoregulatory status along with provocative but less striking effects on survival. Visceral fat removal in rats improved their survival, although not as dramatically as DR. An unexpected result showing the power of genetic background effects was that DR shortened the lifespan of long-lived mice bearing Prop1df, whereas a previous report in a different background had found DR to extend the lifespan of Prop1df mice. Treatment with the mammalian target of rapamycin (mTOR) inhibitor, rapamycin, enhanced the survival of even elderly mice and improved their vaccine response. Genetic inhibition of a TOR target made female, but not male, mice live longer. This year saw the mTOR network firmly established as a major modulator of mammalian lifespan. [source] Transcriptional response to aging and caloric restriction in heart and adipose tissueAGING CELL, Issue 5 2007Nancy J. Linford Summary Sustained caloric restriction (CR) extends lifespan in animal models but the mechanism and primary tissue target(s) have not been identified. Gene expression changes with aging and CR were examined in both heart and white adipose tissue (WAT) of Fischer 344 (F344) male rats using Affymetrix® RAE 230 arrays and validated by quantitative reverse transcriptase,polymerase chain reaction (qRT-PCR) on 18 genes. As expected, age had a substantial effect on transcription on both tissues, although only 21% of cardiac age-associated genes were also altered in WAT. Gene set enrichment analysis revealed coordinated small magnitude changes in ribosomal, proteasomal, and mitochondrial genes with similarities in aging between heart and WAT. CR had very different effects on these two tissues at the transcriptional level. In heart, very few age-associated expression changes were affected by CR, while in WAT, CR suppressed a substantial subset of the age-associated changes. Genes unaltered by aging but altered by CR were identified in WAT but not heart. Most interestingly, we identified a gene expression signature associated with mammalian target of rapamycin (mTOR) activity that was down-regulated with age but preserved by CR in both WAT and heart. In addition, lipid metabolism genes, particularly those associated with peroxisome proliferator-activated receptor , (PPAR,)-mediated adipogenesis were reduced with age but preserved with CR in WAT. These results highlight tissue-specific differences in the gene expression response to CR and support a role for CR-mediated preservation of mTOR activity and adipogenesis in aging WAT. [source] Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replicationJOURNAL OF MEDICAL VIROLOGY, Issue 7 2009Shu-Chen Huang Abstract Enterovirus 71 (EV71) is an important pathogen causing death in children under 5 years old worldwide. However, the underlying pathogenesis remains unclear. This study reveals that EV71 infection in rhabdomyosarcoma (RD) and neuroblastoma (SK-N-SH) cells stimulated the autophagic process, which was demonstrated by an increase of punctate GFP-microtubule-associated protein 1 light chain 3 (GFP-LC3), the level of autophagosome-bound LC3-II protein and double-membrane autophagosome formation. EV71-induced autophagy benefited EV71 replication, which was confirmed by the autophagic inducer rapamycin and the inhibitor 3-methyladenine. Signaling pathway investigation revealed that the decreased expression of phosphorylated mTOR and phosphorylated p70S6K is involved in EV71-induced autophagy in a cell-specific manner. The expression of phosphorylated extracellular signal-regulated kinase (Erk) was suppressed consistently in EV71-infected cells. However it did not participate in the autophagic response of the cell. Other signaling pathway molecules, such as Erk, PI3K/Akt, Bcl-2, BNIP3, and Beclin-1 were not affected by infection with EV71. Electron microscopy showed co-localization of autophagosome-like vesicles with either EV71-VP1 or LC3 protein in neurons of the cervical spinal cord in ICR mice infected with EV71. In conclusion, EV71 infection triggered autophagic flux and induced autophagosome formation both in vitro and in vivo. Autophagy induced by EV71 is beneficial for viral replication. Understanding the role of autophagy induced by EV71 in vitro and the formation of autophagosome-like vesicle in vivo provide new insights into the pathogenesis of EV71 infection. J. Med. Virol. 81:1241,1252, 2009. © 2009 Wiley-Liss, Inc. [source] Translation of striatal-enriched protein tyrosine phosphatase (STEP) after ,1-adrenergic receptor stimulationJOURNAL OF NEUROCHEMISTRY, Issue 2 2007Yaer Hu Abstract The ,-adrenergic system is implicated in long-term synaptic plasticity in the CNS, a process that requires protein synthesis. To identify proteins that are translated in response to ,-adrenergic receptor stimulation and the pathways that regulate this process, we investigated the effects of isoproterenol on the translation of striatal-enriched protein tyrosine phosphatase (STEP) in both cortico-striatal slices and primary neuronal cultures. Isoproterenol stimulation induced a rapid dose-dependent increase in STEP expression. Anisomycin blocked the increase in STEP expression while actinomycin D had no effect, suggesting a translation-dependent mechanism. Isoproterenol-induced STEP translation required activation of ,1-receptors. Application of the MAPK/ERK kinase (MEK) inhibitor SL327 blocked both isoproterenol-induced activation of pERK and subsequent STEP translation. Inhibitors of PI3K (LY294002) or mTOR (rapamycin) also completely blocked STEP translation. These results suggest that co-activation of both the ERK and PI3K-Akt-mTOR pathways are required for STEP translation. As one of the substrates of STEP includes ERK itself, these results suggest that STEP is translated upon ,-adrenergic activation as part of a negative feedback mechanism. [source] Noradrenaline enhances the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of PI3K/Akt and the mTOR/S6K pathwayJOURNAL OF NEUROCHEMISTRY, Issue 2 2007Julie Chenal Abstract Monocarboxylate transporter 2 (MCT2) expression is up-regulated by noradrenaline (NA) in cultured cortical neurons via a putative but undetermined translational mechanism. Western blot analysis showed that p44/p42 mitogen-activated protein kinase (MAPK) was rapidly and strongly phosphorylated by NA treatment. NA also rapidly induced serine/threonine protein kinase from AKT virus (Akt) phosphorylation but to a lesser extent than p44/p42 MAPK. However, Akt activation persisted over a longer period. Similarly, NA induced a rapid and persistent phosphorylation of mammalian target of rapamycin (mTOR), a kinase implicated in the regulation of translation in the central nervous system. Consistent with activation of the mTOR/S6 kinase pathway, phosphorylation of the ribosomal S6 protein, a component of the translation machinery, could be observed upon treatment with NA. In parallel, it was found that the NA-induced increase in MCT2 protein was almost completely blocked by LY294002 (phosphoinositide 3-kinase inhibitor) as well as by rapamycin (mTOR inhibitor), while mitogen-activated protein kinase kinase and p38 MAPK inhibitors had much smaller effects. Taken together, these data reveal that NA induces an increase in neuronal MCT2 protein expression by a mechanism involving stimulation of phosphoinositide 3-kinase/Akt and translational activation via the mTOR/S6 kinase pathway. Moreover, considering the role of NA in synaptic plasticity, alterations in MCT2 expression as described in this study might represent an adaptation to face energy demands associated with enhanced synaptic transmission. [source] |