mtDNA

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by mtDNA

  • mtdna analysis
  • mtdna clade
  • mtdna control region
  • mtdna copy number
  • mtdna data
  • mtdna deletion
  • mtdna diversity
  • mtdna evolution
  • mtdna fragment
  • mtdna haplogroup
  • mtdna haplotype
  • mtdna introgression
  • mtdna lineage
  • mtdna mutation
  • mtdna phylogeny
  • mtdna polymorphism
  • mtdna sequence
  • mtdna sequence data
  • mtdna type
  • mtdna variation

  • Selected Abstracts


    MtDNA from extinct Tainos and the peopling of the Caribbean

    ANNALS OF HUMAN GENETICS, Issue 2 2001
    C. LALUEZA-FOX
    Tainos and Caribs were the inhabitants of the Caribbean when Columbus reached the Americas; both human groups became extinct soon after contact, decimated by the Spaniards and the diseases they brought. Samples belonging to pre-Columbian Taino Indians from the La Caleta site (Dominican Republic) have been analyzed, in order to ascertain the genetic affinities of these groups in relation to present-day Amerinds, and to reconstruct the genetic and demographic events that took place during the peopling of the Caribbean. Twenty-seven bone samples were extracted and analyzed for mtDNA variation. The four major Amerindian mtDNA lineages were screened through amplification of the specific marker regions and restriction enzymatic digestion, when needed. The HVRI of the control region was amplified with four sets of overlapping primers and sequenced in 19 of the samples. Both restriction enzyme and sequencing results suggest that only two (C and D) of the major mtDNA lineages were present in the sample: 18 individuals (75%) belonged to the C haplogroup, and 6 (25%) to the D haplogroup. Sequences display specific substitutions that are known to correlate with each haplogroup, a fact that helped to reject the possibility of European DNA contamination. A low rate of Taq misincorporations due to template damage was estimated from the cloning and sequencing of different PCR products of one of the samples. High frequencies of C and D haplogroups are more common in South American populations, a fact that points to that sub-continent as the homeland of the Taino ancestors, as previously suggested by linguistic and archaeological evidence. Sequence and haplogroup data show that the Tainos had a substantially reduced mtDNA diversity, which is indicative of an important founder effect during the colonization of the Caribbean Islands, assumed to have been a linear migratory movement from mainland South America following the chain configuration of the Antilles. [source]


    Regulation of skeletal muscle mitochondrial function: genes to proteins

    ACTA PHYSIOLOGICA, Issue 4 2010
    I. R. Lanza
    Abstract The impact of ageing on mitochondrial function and the deterministic role of mitochondria on senescence continue to be topics of vigorous debate. Many studies report that skeletal muscle mitochondrial content and function are reduced with ageing and metabolic diseases associated with insulin resistance. However, an accumulating body of literature suggests that physical inactivity typical of ageing may be a more important determinant of mitochondrial function than chronological age, per se. Reports of age-related declines in mitochondrial function have spawned a vast body of literature devoted to understanding the underlying mechanisms. These mechanisms include decreased abundance of mtDNA, reduced mRNA levels, as well as decreased synthesis and expression of mitochondrial proteins, ultimately resulting in decreased function of the whole organelle. Effective therapies to prevent, reverse or delay the onset of the aforementioned mitochondrial changes, regardless of their inevitability or precise underlying causes, require an intimate understanding of the processes that regulate mitochondrial biogenesis, which necessitates the coordinated regulation of nuclear and mitochondrial genomes. Herein we review the current thinking on regulation of mitochondrial biogenesis by transcription factors and transcriptional co-activators and the role of hormones and exercise in initiating this process. We review how exercise may help preserve mitochondrial content and functionality across the lifespan, and how physical inactivity is emerging as a major determinant of many age-associated changes at the level of the mitochondrion. We also review evidence that some mitochondrial changes with ageing are independent of exercise or physical activity and appear to be inevitable consequences of old age. [source]


    Phylogenetic Reanalysis of the Saudi Gazelle and Its Implications for Conservation

    CONSERVATION BIOLOGY, Issue 4 2001
    Robert L. Hammond
    The Saudi gazelle ( Gazella saudiya) was endemic to the Arabian peninsula but is now considered extinct in the wild and is potentially a candidate for captive breeding and reintroduction. Using 375 base pairs of mitochondrial DNA (mtDNA) cytochrome b gene derived from museum samples collected from the wild prior to the presumed extinction of this species, we show that G. saudiya is the sister taxon of the African dorcas gazelle ( G. dorcas). Reciprocal monophyly of G. saudiya mtDNA haplotypes with G. dorcas, coupled with morphological distinctiveness, suggests that it is an evolutionarily significant unit. These data indicate that captive populations identified previously as potential sources of G. saudiya for captive breeding appear incorrectly designated and are irrelevant to the conservation of G. saudiya. The polymerase chain reaction,restriction fragment length polymorphism ( PCR-RFLP) analysis of several private collections of living gazelles in Saudi Arabia provides no evidence for the survival of G. saudiya. We recommend that field surveys be undertaken to establish whether G. saudiya is indeed extinct in the wild and that other private collections within the Arabian peninsula be screened genetically. We urge caution when captive animals of unknown provenance are used to investigate the phylogenetics of cryptic species groups. Resumen: La identificación de poblaciones taxonómicamente apropiadas de especies en peligro para programas de reproducción en cautiverio y de reintroducción es fundamental para su éxito. La Gacela Saudi (Gazella saudiya) fue endémica a la península de Arabia pero ahora está considerada como extinta en su medio y es un candidato potencial para reproducción en cautiverio y reintroducción. Utilizando 375 pares de bases de ADN mitocondrial (ADNmt) del gene citocromo b derivados de muestras de museos colectadas en el medio silvestre antes de la extinción de la especie, mostramos que G. saudiya es el taxón hermano de la gacela dorcas africana (G. dorcas). La monofilia recíproca de haplotipos de ADNmt de G. saudiya con G. dorcas, aunado a diferencias morfológicas, sugiere que es una unidad evolutiva significativa. Estos datos indican que las poblaciones cautivas identificadas previamente como fuente potencial de G. saudiya para reproducción en cautiverio están incorrectamente identificadas y son irrelevantes para la conservación de G. saudiya. El análisis PCR-RFLP de varias colecciones privadas de gacelas vivas en Arabia Saudita no proporcionan evidencia para la supervivencia de G. saudiya. Recomendamos que se realicen muestreos en el campo para establecer si en efecto G. saudiya está extinta en su hábitat y que se examinen genéticamente las otras colecciones privadas en la península Arábiga. Recomendamos precaución cuando animales cautivos de origen desconocido son utilizados para investigar la filogenia de grupos de especies crípticas. [source]


    Bioenergetics and the epigenome: Interface between the environment and genes in common diseases

    DEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 2 2010
    Douglas C. Wallace
    Abstract Extensive efforts have been directed at using genome-wide association studies (GWAS) to identify the genes responsible for common metabolic and degenerative diseases, cancer, and aging, but with limited success. While environmental factors have been evoked to explain this conundrum, the nature of these environmental factors remains unexplained. The availability of and demands for energy constitute one of the most important aspects of the environment. The flow of energy through the cell is primarily mediated by the mitochondrion, which oxidizes reducing equivalents from hydrocarbons via acetyl-CoA, NADH + H+, and FADH2 to generate ATP through oxidative phosphorylation (OXPHOS). The mitochondrial genome encompasses hundreds of nuclear DNA (nDNA)-encoded genes plus 37 mitochondrial DNA (mtDNA)-encoded genes. Although the mtDNA has a high mutation rate, only milder, potentially adaptive mutations are introduced into the population through female oocytes. In contrast, nDNA-encoded bioenergetic genes have a low mutation rate. However, their expression is modulated by histone phosphorylation and acetylation using mitochondrially-generated ATP and acetyl-CoA, which permits increased gene expression, growth, and reproduction when calories are abundant. Phosphorylation, acetylaton, and cellular redox state also regulate most signal transduction pathways and activities of multiple transcription factors. Thus, mtDNA mutations provide heritable and stable adaptation to regional differences while mitochondrially-mediated changes in the epigenome permit reversible modulation of gene expression in response to fluctuations in the energy environment. The most common genomic changes that interface with the environment and cause complex disease must, therefore, be mitochondrial and epigenomic in origin. © 2010 Wiley-Liss, Inc. Dev Disabil Res Rev 2010;16:114,119. [source]


    Maternal transmission of diabetes

    DIABETIC MEDICINE, Issue 2 2002
    J. C. Alcolado
    Abstract Type 2 diabetes mellitus represents a heterogeneous group of conditions characterized by impaired glucose homeostasis. The disorder runs in families but the mechanism underlying this is unknown. Many, but not all, studies have suggested that mothers are excessively implicated in the transmission of the disorder. A number of possible genetic phenomena could explain this observation, including the exclusively maternal transmission of mitochondrial DNA (mtDNA). It is now apparent that mutations in mtDNA can indeed result in maternally inherited diabetes. Although several mutations have been implicated, the strongest evidence relates to a point substitution at nucleotide position 3243 (A to G) in the mitochondrial tRNAleu(UUR) gene. Mitochondrial diabetes is commonly associated with nerve deafness and often presents with progressive non-autoimmune ,-cell failure. Specific treatment with Coenzyme Q10 or L-carnitine may be beneficial. Several rodent models of mitochondrial diabetes have been developed, including one in which mtDNA is specifically depleted in the pancreatic islets. Apart from severe, pathogenic mtDNA mutations, common polymorphisms in mtDNA may contribute to variations of insulin secretory capacity in normal individuals. Mitochondrial diabetes accounts for less than 1% of all diabetes and other mechanisms must underlie the maternal transmission of Type 2 diabetes. Possibilities include the role of maternally controlled environments, imprinted genes and epigenetic phenomena. [source]


    Geographical segregation in Dunlin Calidris alpina populations wintering along the East Atlantic migratory flyway , evidence from mitochondrial DNA analysis

    DIVERSITY AND DISTRIBUTIONS, Issue 5 2008
    Ricardo J. Lopes
    ABSTRACT Dunlin Calidris alpina is one of the most abundant shorebirds using coastal habitats in the East Atlantic migratory flyway, that links arctic breeding locations (Greenland to Siberia) with wintering grounds (West Europe to West Africa). Differential migration and winter segregation between populations have been indicated by morphometrics and ringing recoveries. Here, we analyse the potential of genetic markers (mitochondrial DNA , mtDNA) to validate and enhance such findings. We compared mtDNA haplotypes frequencies at different wintering sites (from north-west Europe to West Africa). All birds from West Africa had western (European) haplotypes, while the eastern (Siberian) haplotypes were only present in European winter samples, reaching higher frequencies further north in Europe. Compilation of published results from migrating birds also confirmed these differences, with the sole presence of European haplotypes in Iberia and West Africa and increasingly higher frequencies of Siberian haplotypes from south-west to north-west Europe. Comparison with published haplotype frequencies of breeding populations shows that birds from Greenland, Iceland, and North Europe were predominant in wintering grounds in West Africa, while populations wintering in West Europe originated from more eastern breeding grounds (e.g. North Russia). These results show that genetic markers can be used to enhance the integrative monitoring of wintering and breeding populations, by providing biogeographical evidence that validate the winter segregation of breeding populations. [source]


    Electrophoretic analysis of sequence variability in three mitochondrial DNA regions for ascaridoid parasites of human and animal health significance

    ELECTROPHORESIS, Issue 13 2008
    Ming-Wei Li
    Abstract Sequence variability in three mitochondrial DNA (mtDNA) regions, namely cytochrome c oxidase subunit 1 (cox1), NADH dehydrogenase subunits 1 and 4 (nad1 and nad4), among and within Toxocara canis, T. cati, T. malaysiensis, T. vitulorum and Toxascaris leonina from different geographical origins was examined by a mutation-scanning approach. A portion of the cox1 gene (pcox1), a portion of the nad1 and nad4 genes (pnad1 and pnad4) were amplified separately from individual ascaridoid nematodes by polymerase chain reaction and the amplicons analyzed by single-strand conformation polymorphism (SSCP). Representative samples displaying sequence variation in SSCP profiles were subjected to sequencing in order to define genetic markers for their specific identification and differentiation. While the intra-specific sequence variations within each of the five ascaridoid species were 0.2,3.7% for pcox1, 0,2.8% for pnad1 and 0,2.3% for pnad4, the inter-specific sequence differences were significantly higher, being 7.9,12.9% for pcox1, 10.7,21.1% for pnad1 and 12.9,21.7% for pnad4, respectively. Phylogenetic analyses based on the combined sequences of pcox1, pnad1 and pnad4 revealed that the recently described species T. malaysiensis was more closely related to T. cati than to T. canis. These findings provided mtDNA evidence for the validity of T. malaysiensis and also demonstrated clearly the usefulness and attributes of the mutation-scanning sequencing approach for studying the population genetic structures of these and other nematodes of socio-economic importance. [source]


    Multiplex primer extension analysis for rapid detection of major European mitochondrial haplogroups

    ELECTROPHORESIS, Issue 19 2006
    Martina Wiesbauer
    Abstract The evolution of the human mitochondrial genome is reflected in the existence of ethnically distinct lineages or haplogroups. Alterations of mitochondrial DNA (mtDNA) have been instrumental in studies of human phylogeny, in population genetics, and in molecular medicine to link pathological mutations to a variety of human diseases of complex etiology. For each of these applications, rapid and cost effective assays for mtDNA haplogrouping are invaluable. Here we describe a hierarchical system for mtDNA haplogrouping that combines multiplex PCR amplifications, multiplex single-base primer extensions, and CE for analyzing ten haplogroup-diagnostic mitochondrial single nucleotide polymorphisms. Using this rapid and cost-effective mtDNA genotyping method, we were able to show that within a large, randomly selected cohort of healthy Austrians (n,=,1172), mtDNAs could be assigned to all nine major European haplogroups. Forty-four percent belonged to haplogroup H, the most frequent haplogroup in European Caucasian populations. The other major haplogroups identified were U (15.4%), J (11.8%), T (8.2%) and K (5.1%). The frequencies of haplogroups in Austria is within the range observed for other European countries. Our method may be suitable for mitochondrial genotyping of samples from large-scale epidemiology studies and for identifying markers of genetic susceptibility. [source]


    Capillary electrophoresis-laser induced fluorescence analysis of endogenous damage in mitochondrial and genomic DNA

    ELECTROPHORESIS, Issue 13 2005
    Michaela Wirtz
    Abstract Reactive oxygen molecules are formed in vivo as by-products of normal aerobic metabolism. All organisms dependent on oxygen are inevitably exposed to these species so that DNA damage can occur in both genomic and mitochondrial DNA (mtDNA). In order to determine endogenous DNA damage we have developed an analytical method that involves the isolation and hydrolysis of genomic DNA or mtDNA, the labeling of modified and unmodified nucleotides and micellar electrokinetic chromatography with laser-induced fluorescence detection. With this method we have found etheno-adenine, thymine glycol, uracil, hypoxanthine, and 5-methylcytosine. These were identified by the addition of internal standards to the genomic or mtDNA. There are a large number of other signals in the electropherograms of mtDNA that we have never found in genomic DNA analysis because they are at lower concentration in the genome. In the DNA of untreated patients with chronic lymphocytic leukemia (CLL), uracil and high levels of etheno-adenine were found, which can be explained by antioxidant enzyme alterations and oxidative stress in the CLL lymphocytes. [source]


    Alterations of plasma antioxidants and mitochondrial DNA mutation in hair follicles of smokers

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 3 2002
    Chin-San Liu
    Abstract The effects of long-term smoking on mitochondrial DNA (mtDNA) deletions in hair follicles were investigated in subjects with different antioxidant capacity. Twenty-two male smokers with a smoking index of greater than 5 pack-years and without any known systemic diseases were recruited for this study. Forty healthy nonsmoking males were included as controls. We found that the concentrations of ascorbate and ,-tocopherol and the activities of glutathione S -transferase (GST) and glutathione peroxidase in blood plasma were significantly decreased in smokers. The levels of glutathione and protein thiols in whole blood and the incidence of a 4,977 bp deletion of mtDNA (dmtDNA) in hair follicles were significantly increased in smokers. A significantly higher incidence of the 4,977 bp dmtDNA was found in smokers with plasma GST activity less than 5.66 U/l (OR = 7.2, P = 0.020). Using multiple covariate ANOVA and logistic regression, we found that age and low plasma GST activity were the only two risk factors for the 4,977 bp dmtDNA. These results suggest that smoking depletes antioxidants and causes mtDNA deletions and that plasma GST may play an important role in the preservation of the mitochondrial genome in tissue cells of smokers. Environ. Mol. Mutagen. 40:168,174, 2002. © 2002 Wiley-Liss, Inc. [source]


    Recent evolutionary diversification of a protist lineage

    ENVIRONMENTAL MICROBIOLOGY, Issue 5 2008
    Ramiro Logares
    Summary Here, we have identified a protist (dinoflagellate) lineage that has diversified recently in evolutionary terms. The species members of this lineage inhabit cold-water marine and lacustrine habitats, which are distributed along a broad range of salinities (0,32) and geographic distances (0,18 000 km). Moreover, the species present different degrees of morphological and sometimes physiological variability. Altogether, we analysed 30 strains, generating 55 new DNA sequences. The nuclear ribosomal DNA (nrDNA) sequences (including rapidly evolving introns) were very similar or identical among all the analysed isolates. This very low nrDNA differentiation was contrasted by a relatively high cytochrome b (COB) mitochondrial DNA (mtDNA) polymorphism, even though the COB evolves very slowly in dinoflagellates. The 16 Maximum Likelihood and Bayesian phylogenies constructed using nr/mtDNA indicated that the studied cold-water dinoflagellates constitute a monophyletic group (supported also by the morphological analyses), which appears to be evolutionary related to marine-brackish and sometimes toxic Pfiesteria species. We conclude that the studied dinoflagellates belong to a lineage which has diversified recently and spread, sometimes over long distances, across low-temperature environments which differ markedly in ecology (marine versus lacustrine communities) and salinity. Probably, this evolutionary diversification was promoted by the variety of natural selection regimes encountered in the different environments. [source]


    Integration of genotoxicity and population genetic analyses in kangaroo rats (Dipodomys merriami) exposed to radionuclide contamination at the Nevada Test Site, USA

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2001
    Christopher W. Theodorakis
    Abstract We examined effects of radionuclide exposure at two atomic blast sites on kangaroo rats (Dipodomys merriami) at the Nevada Test Site, Nevada, USA, using genotoxicity and population genetic analyses. We assessed chromosome damage by micronucleus and flow cytometric assays and genetic variation by randomly amplified polymorphic DNA (RAPD) and mitochondrial DNA (mtDNA) analyses. The RAPD analysis showed no population structure, but mtDNA exhibited differentiation among and within populations. Genotoxicity effects were not observed when all individuals were analyzed. However, individuals with mtDNA haplotypes unique to the contaminated sites had greater chromosomal damage than contaminated-site individuals with haplotypes shared with reference sites. When interpopulation comparisons used individuals with unique haplotypes, one contaminated site had greater levels of chromosome damage than one or both of the reference sites. We hypothesize that shared-haplotype individuals are potential migrants and that unique-haplotype individuals are potential long-term residents. A parsimony approach was used to estimate the minimum number of migration events necessary to explain the haplotype distributions on a phylogenetic tree. The observed predominance of migration events into the contaminated sites supported our migration hypothesis. We conclude the atomic blast sites are ecological sinks and that immigration masks the genotoxic effects of radiation on the resident populations. [source]


    THE COMBINED EFFECTS OF RIVERS AND REFUGIA GENERATE EXTREME CRYPTIC FRAGMENTATION WITHIN THE COMMON GROUND SKINK (SCINCELLA LATERALIS)

    EVOLUTION, Issue 2 2010
    Nathan D. Jackson
    Rivers can act as both islands of mesic refugia for terrestrial organisms during times of aridification and barriers to gene flow, though evidence for long-term isolation by rivers is mixed. Understanding the extent to which riverine barrier effects can be heightened for populations trapped in mesic refugia can help explain maintenance and generation of diversity in the face of Pleistocene climate change. Herein, we implement phylogenetic and population genetic approaches to investigate the phylogeographic structure and history of the ground skink, Scincella lateralis, using mtDNA and eight nuclear loci. We then test several predictions of a river,refugia model of diversification. We recover 14 well-resolved mtDNA lineages distributed east,west along the Gulf Coast with a subset of lineages extending northward. In contrast, ncDNA exhibits limited phylogenetic structure or congruence among loci. However, multilocus population structure is broadly congruent with mtDNA patterns and suggests that deep coalescence rather than differential gene flow is responsible for mtDNA,ncDNA discordance. The observed patterns suggest that most lineages originated from population vicariance due to riverine barriers strengthened during the Plio,Pleistocene by a climate-induced coastal distribution. Diversification due to rivers is likely a special case, contingent upon other environmental or biological factors that reinforce riverine barrier effects. [source]


    LEAKY PREZYGOTIC ISOLATION AND POROUS GENOMES: RAPID INTROGRESSION OF MATERNALLY INHERITED DNA

    EVOLUTION, Issue 4 2005
    Kai M. A. Chan
    Abstract Accurate phylogenies are crucial for understanding evolutionary processes, especially species diversification. It is commonly assumed that "good" species are sufficiently isolated genetically that gene genealogies represent accurate phylogenies. However, it is increasingly clear that good species may continue to exchange genetic material through hybridization (introgression). Many studies of closely related species reveal introgression of some genes without others, often with more rapid introgression of maternally inherited chloroplast or mitochondrial DNA (cpDNA, mtDNA). We seek a general explanation for this biased introgression using simple models of common reproductive isolating barriers (RIBs). We compare empirically informed models of prezygotic isolation (for pre- and postinsemination mechanisms of both female choice and male competition) with postzygotic isolation and demonstrate that rate of introgression depends critically upon type of RIB and mode of genetic inheritance (maternal versus biparental versus paternal). Our frequency-dependent prezygotic RIBs allow much more rapid introgression of biparentally and maternally inherited genes than do commonly modeled postzygotic RIBs (especially maternally inherited DNA). After considering the specific predictions in the context of empirical observations, we conclude that our model of prezygotic RIBs is a general explanation for biased introgression of maternally inherited genomic components. These findings suggest that we should use extreme caution when interpreting single gene genealogies as species phylogenies, especially for cpDNA and mtDNA. [source]


    WHEN VICARS MEET: A NARROW CONTACT ZONE BETWEEN MORPHOLOGICALLY CRYPTIC PHYLOGEOGRAPHIC LINEAGES OF THE RAINFOREST SKINK, CARLIA RUBRIGULARIS

    EVOLUTION, Issue 7 2004
    Ben L. Phillips
    Abstract Phylogeographic analyses of the fauna of the Australian wet tropics rainforest have provided strong evidence for long-term isolation of populations among allopatric refugia, yet typically there is no corresponding divergence in morphology. This system provides an opportunity to examine the consequences of geographic isolation, independent of morphological divergence, and thus to assess the broader significance of historical subdivisions revealed through mitochondrial DNA phylogeography. We have located and characterized a zone of secondary contact between two long isolated (mtDNA divergence > 15%) lineages of the skink Carlia rubrigularis using one mitochondrial and eight nuclear (two intron, six microsatellite) markers. This revealed a remarkably narrow (width<3 km) hybrid zone with substantial linkage disequilibrium and strong deficits of heterozygotes at two of three nuclear loci with diagnostic alleles. Cline centers were coincident across loci. Using a novel form of likelihood analysis, we were unable to distinguish between sigmoidal and stepped cline shapes except at one nuclear locus for which the latter was inferred. Given estimated dispersal rates of 90,133 m X gen,1/2 and assuming equilibrium, the observed cline widths suggest effective selection against heterozygotes of at least 22,49% and possibly as high as 70%. These observations reveal substantial postmating isolation, although the absence of consistent deviations from Hardy-Weinberg equilibrium at diagnostic loci suggests that there is little accompanying premating isolation. The tight geographic correspondence between transitions in mtDNA and those for nuclear genes and corresponding evidence for selection against hybrids indicates that these morphologically cryptic phylogroups could be considered as incipient species. Nonetheless, we caution against the use of mtDNA phylogeography as a sole criterion for defining species boundaries. [source]


    INITIAL STAGES OF REPRODUCTIVE ISOLATION IN TWO SPECIES OF THE ENDANGERED SONORAN TOPMINNOW

    EVOLUTION, Issue 12 2003
    Carla R. Hurt
    Abstract Long-term geographic isolation can result in reproductive incompatibilities due to forces such as mutation, genetic drift, and differential selection. In the Sonoran topminnow, molecular genetic studies of mtDNA, microsatellites, and MHC genes have shown that the endangered Gila and Yaqui topminnows are substantially different, suggesting that divergence took place approximately two million years ago. Here we examined hybrid crosses and backcrosses between these two allopatric taxa to evaluate the accumulation of postmating barriers to reproduction. These results are then compared with results from a previous study where male topminnows were shown to mate assortatively with conspecific females. Despite their preference for conspecific mates, both types of interspecific crosses successfully produced offspring. There was evidence of reduced hybrid fitness, including smaller mean brood size and male-biased sex ratio, for some classes of backcrosses. Brood sizes and interbrood intervals varied significantly when hybrids were subdivided into different cross categories. Our results illustrate the importance of distinctly defining hybrid classes in studies of reproductive isolation. To our knowledge, this is the first such detailed evolutionary analysis in endangered fish taxa. [source]


    CONTEMPORARY PATTERNS IN A HISTORICAL CONTEXT: PHYLOGEOGRAPHIC HISTORY OF THE PIPEVINE SWALLOWTAIL, BATTUS PHILENOR (PAPILIONIDAE)

    EVOLUTION, Issue 5 2003
    James A. Fordyce
    Abstract We examined mitochondrial DNA (mtDNA) variation in pipevine swallowtail butterflies (Battus philenor) from throughout its extant range to provide a historical, phylogeographical context for ecological studies of the disjunct population in California. We evaluate current hypotheses regarding host plant use, behavior, and mimetic relationships of B. philenor populations and generate alternative hypotheses. Compared to populations throughout the rest of the species' range, California populations are ecologically distinct in that they lack mimics, lay significantly larger clutches of eggs, and exclusively use a unique, endemic larval host plant. Analysis of molecular variance, tests of population differentiation, and nested clade analysis of mtDNA variation indicate that, despite low levels of population genetic structure across the species' range, there is evidence of recent range expansion from presumed Pleistocene refuge(s) in southeastern North America. Colonization of California appears to have been a recent event. This phylogeographic investigation also suggests that the evolution of life-history adaptations to a novel larval host has occurred rapidly in California and the lack of mimics in California may be attributable to the recency of colonization. [source]


    EVIDENCE FOR HISTORICAL INTROGRESSION ALONG A CONTACT ZONE BETWEEN TWO SPECIES OF CHAR (PISCES: SALMONIDAE) IN NORTHWESTERN NORTH AMERICA

    EVOLUTION, Issue 5 2002
    Z. Redenbach
    Abstract Phylogeographic analyses can yield valuable insights into the geographic and historical contexts of contact and hybridization between taxa. Two species of char (Salmonidae), Dolly Varden (Salvelinus malma) and bull trout (S. confluentus) have largely parapatric distributions in watersheds of northwestern North America. They are, however, sympatric in several localities and hybridization and some introgression occurs across a broad area of contact. We conducted a comparative phylogenetic analysis of Dolly Varden and bull trout to gain a historical perspective of hybridization between these species and to test for footprints of historical introgression. We resolved two major Dolly Varden mitochondrial DNA (mtDNA) clades (with 1.4,2.2% sequence divergence between haplotypes) that had different geographical distributions. Clade N is distributed across most of the range of Dolly Varden, from southern British Columbia through to the Kuril Islands in Asia. Clade S had a much more limited distribution, from Washington state, at the southern limit of the Dolly Varden range, to the middle of Vancouver Island. The distribution and inferred ages of the mtDNA clades suggested that Dolly Varden survived the Wisconsinan glaciation in a previously unsuspected refuge south of the ice sheet, and that Dolly Varden and bull trout were probably in continuous contact over most of the last 100,000 years. When bull trout were included in the phylogenetic analysis, however, the mtDNA of neither species was monophyletic: Clade S Dolly Varden clustered within the bull trout mtDNA clade. This pattern was discordant with two nuclear phylogenies produced (growth hormone 2 and rRNA internal transcribed sequence 1), in which Dolly Varden and bull trout were reciprocally monophyletic. This discordance between mtDNA- and nDNA-based phylogenies indicates that historical introgression of bull trout mtDNA into Dolly Varden occurred. Percent sequence divergence within these introgressed Dolly Varden (clade S) was 0.2,0.6%, implying that the introgression occurred prior to the most recent glaciation. Our analysis and other evidence of contact between divergent lineages in northwestern North America strongly suggests that the area may be the site of previously unsuspected suture zones of aquatic biotas. [source]


    POSTGLACIAL DISPERSAL OF THE EUROPEAN RABBIT (ORYCTOLAGUS CUNICULUS) ON THE IBERIAN PENINSULA RECONSTRUCTED FROM NESTED CLADE AND MISMATCH ANALYSES OF MITOCHONDRIAL DNA GENETIC VARIATION

    EVOLUTION, Issue 4 2002
    Madalena Branco
    Abstract Nested clade analysis was applied to cytochrome b restriction site data previously obtained on 20 natural populations of the European rabbit across the Iberian Peninsula to test the hypothesis of postglacial dispersal from two main refugia, one in the northeast and the other in the southwest. Apart from historical fragmentation that resulted in geographic discontinuity of two distinct mitochondrial DNA (mtDNA) clades A and B, patterns of haplotype genetic variability have been shaped mostly by restricted gene flow via isolation by distance. The distribution of tip versus interior haplotypes suggests that dispersal occurred from both the southwestern and northeastern groups. Dispersal from the southwest had a north and northwest direction, whereas from the northeast it had mostly a western and southern orientation, with subsequent overlap in a southeastern-northwestern axis across the Iberian Peninsula. The analysis of the pairwise mismatch distribution of a 179,181-bp fragment of the mtDNA control region, for seven of those populations, further supports the idea that major patterns of dispersal were in the direction of central Iberia. Additionally, rabbit populations do not show signs of any significant loss of genetic diversity in the recent past, implying that they maintained large population sizes and structure throughout the ice ages. This is congruent with the fact that the Iberian Peninsula was itself a glacial refugium during Quaternary ice ages. Nonetheless, climatic oscillations of this period, although certainly milder than in northern Europe, were sufficient to affect the range distributions of Iberian organisms. [source]


    Analysis of DNA-binding sites on Mhr1, a yeast mitochondrial ATP-independent homologous pairing protein

    FEBS JOURNAL, Issue 6 2010
    Tokiha Masuda
    The Mhr1 protein is necessary for mtDNA homologous recombination in Saccharomyces cerevisiae. Homologous pairing (HP) is an essential reaction during homologous recombination, and is generally catalyzed by the RecA/Rad51 family of proteins in an ATP-dependent manner. Mhr1 catalyzes HP through a mechanism similar, at the DNA level, to that of the RecA/Rad51 proteins, but without utilizing ATP. However, it has no sequence homology with the RecA/Rad51 family proteins or with other ATP-independent HP proteins, and exhibits different requirements for DNA topology. We are interested in the structural features of the functional domains of Mhr1. In this study, we employed the native fluorescence of Mhr1's Trp residues to examine the energy transfer from the Trp residues to etheno-modified ssDNA bound to Mhr1. Our results showed that two of the seven Trp residues (Trp71 and Trp165) are spatially close to the bound DNA. A systematic analysis of mutant Mhr1 proteins revealed that Asp69 is involved in Mg2+ -dependent DNA binding, and that multiple Lys and Arg residues located around Trp71 and Trp165 are involved in the DNA-binding activity of Mhr1. In addition, in vivo complementation analyses showed that a region around Trp165 is important for the maintenance of mtDNA. On the basis of these results, we discuss the function of the region surrounding Trp165. [source]


    Efficient use of DNA molecular markers to construct industrial yeast strains

    FEMS YEAST RESEARCH, Issue 8 2007
    Philippe Marullo
    Abstract Saccharomyces cerevisiae yeast strains exhibit a huge genotypic and phenotypic diversity. Breeding strategies taking advantage of these characteristics would contribute greatly to improving industrial yeasts. Here we mapped and introgressed chromosomal regions controlling industrial yeast properties, such as hydrogen sulphide production, phenolic off-flavor and a kinetic trait (lag phase duration). Two parent strains derived from industrial isolates used in winemaking and which exhibited significant quantitative differences in these traits were crossed and their progeny (50,170 clones) was analyzed for the segregation of these traits. Forty-eight segregants were genotyped at 2212 marker positions using DNA microarrays and one significant locus was mapped for each trait. To exploit these loci, an introgression approach was supervised by molecular markers monitoring using PCR/RFLP. Five successive backcrosses between an elite strain and appropriate segregants were sufficient to improve three trait values. Microarray-based genotyping confirmed that over 95% of the elite strain genome was recovered by this methodology. Moreover, karyotype patterns, mtDNA and tetrad analysis showed some genomic rearrangements during the introgression procedure. [source]


    Arsenic induces caspase- and mitochondria-mediated apoptosis in Saccharomyces cerevisiae

    FEMS YEAST RESEARCH, Issue 6 2007
    Li Du
    Abstract In recent years, it has been shown that yeast, a unicellular organism, undergoes apoptosis in response to various factors. Here we demonstrate that the highly effective anticancer agent arsenic induces apoptotic process in yeast cells. Reactive oxygen species (ROS) production was observed in the process. Moreover, mitochondrial membrane potential decreased after arsenic treatment. Resistance of the rho0 mutant strain (lacking mtDNA) to arsenic provides further evidence that this death process involves mitochondria. In addition, hypersensitivity of ,sod1 to arsenic suggests the critical role of ROS. Cell death and DNA fragmentation decreased in a ,yca1 deletion mutant, indicating the participation of yeast caspase-1 protein in apoptosis. The implications of these findings for arsenic-induced apoptosis are discussed. [source]


    The mitochondrial genome of the wine yeast Hanseniaspora uvarum: a unique genome organization among yeast/fungal counterparts

    FEMS YEAST RESEARCH, Issue 1 2006
    Paraskevi V. Pramateftaki
    Abstract The complete sequence of the apiculate wine yeast Hanseniaspora uvarum mtDNA has been determined and analysed. It is an extremely compact linear molecule containing the shortest functional region ever found in fungi (11 094 bp long), flanked by Type 2 telomeric inverted repeats. The latter contained a 2704-bp-long subterminal region and tandem repeats of 839-bp units. In consequence, a population of mtDNA molecules that differed at the number of their telomeric reiterations was detected. The functional region of the mitochondrial genome coded for 32 genes, which included seven subunits of respiratory complexes and ATP synthase (the genes encoding for NADH oxidoreductase subunits were absent), two rRNAs and 23 tRNA genes which recognized codons for all amino acids. A single intron interrupted the cytochrome oxidase subunit 1 gene. A number of reasons contributed towards its strikingly small size, namely: (1) the remarkable size reduction (by >40%) of the rns and rnl genes; (2) that most tRNA genes and five of the seven protein-coding genes were the shortest among known yeast homologs; and (3) that the noncoding regions were restricted to 5.1% of the genome. In addition, the genome showed multiple changes in the orientation of transcription and the gene order differed drastically from other yeasts. When all protein coding gene sequences were considered as one unit and were compared with the corresponding molecules from all other complete mtDNAs of yeasts, the phylogenetic trees constructed robustly supported its placement basal to the yeast species of the ,Saccharomyces complex', demonstrating the advantage of this approach over single-gene or multigene approaches of unlinked genes. [source]


    Genetic population structure of the net-winged midge, Elporia barnardi (Diptera: Blephariceridae) in streams of the south-western Cape, South Africa: implications for dispersal

    FRESHWATER BIOLOGY, Issue 1 2003
    M. J. Wishart
    SUMMARY 1.,The net-winged midges (Diptera: Blephariceridae), with highly specific habitat requirements and specialised morphological adaptations, exhibit high habitat fidelity and a limited potential for dispersal. Given the longitudinal and hierarchical nature of lotic systems, along with the geological structure of catchment units, we hypothesise that populations of net-winged midge should exhibit a high degree of population sub-structuring. 2.,Sequence variation in the cytochrome c oxidase subunit I (COI) region of the mitochondrial DNA (mtDNA) was examined to determine patterns of genetic variation and infer historical and contemporary processes important in the genetic structuring of populations of Elporia barnardi. The DNA variation was examined at sites within streams, between streams in the same range, and between mountain ranges in the south-western Cape of South Africa. 3.,Twenty-five haplotypes, 641 bp in length, were identified from the 93 individuals sampled. A neighbour-joining tree revealed two highly divergent clades (,5%) corresponding to populations from the two mountain ranges. A number of monophyletic groups were identified within each clade, associated with individual catchment units. 4.,The distribution of genetic variation was examined using analysis of molecular variance (amova). This showed most of the variation to be distributed among the two ranges (,80%), with a small percentage (,15%) distributed among streams within each range. Similarly, variation among streams on Table Mountain was primarily distributed among catchment units (86%). A Mantel's test revealed a significant relationship between genetic differentiation and geographical distance, suggesting isolation by distance (P < 0.001). 5.,Levels of sequence divergence between the two major clades, representing the two mountain ranges, are comparable with those of some intra-generic species comparisons. Vicariant events, such as the isolation of the Peninsula mountain chain and Table Mountain, may have been important in the evolution of what is now a highly endemic fauna. 6.,The monophyletic nature of the catchment units suggests that dispersal is confined to the stream environment and that mountain ridges provide effective physical barriers to dispersal of E. barnardi. [source]


    Genetic evidence for `leaky' cohorts in the semivoltine stonefly Peltoperla tarteri (Plecoptera: Peltoperlidae)

    FRESHWATER BIOLOGY, Issue 3 2002
    ALICIA S. SCHULTHEIS
    1.,Genetic techniques are being used increasingly to address questions about dispersal and gene flow of freshwater invertebrates. However, population genetic structure can be affected by factors other than dispersal. Many stream insects have long life cycles that result in the simultaneous existence of multiple cohorts throughout the larval development period. If larval development is fixed, successive cohorts may be reproductively isolated and, as a result, genetically distinct. In such cases, significant levels of genetic differentiation between cohorts could confound estimates of dispersal based on population genetic structure. 2.,Peltoperla tarteri is a stonefly that can be abundant in Appalachian headwater streams. Although P. tarteri is univoltine at the type locality (Big Paint Hollow, WV, U.S.A.), the study populations in southwestern Virginia, U.S.A., were semivoltine. This semivoltine life cycle results in the simultaneous existence of multiple cohorts with the potential for significant genetic differentiation among them. 3.,Levels of genetic differentiation among P. tarteri cohorts were analysed with mitochondrial DNA (mtDNA) sequence data from the non-coding origin of replication or `control' region from 93 individuals from two successive cohorts (collected in 1998 and 1999). 4.,Analysis of molecular variance (AMOVA) indicated no genetic differentiation among cohorts (FST=0.0), and gene flow among cohorts was very high (Nm=,). 5.,High levels of gene flow among cohorts suggest that larval development of P. tarteri is not fixed. Gene flow among cohorts most likely occurs as a result of a cohort split in which some individuals complete development in one or three years instead of two. [source]


    Association between mitochondrial DNA 10398A>G polymorphism and the volume of amygdala

    GENES, BRAIN AND BEHAVIOR, Issue 6 2008
    H. Yamasue
    Mitochondrial calcium regulation plays a number of important roles in neurons. Mitochondrial DNA (mtDNA) is highly polymorphic, and its interindividual variation is associated with various neuropsychiatric diseases and mental functions. An mtDNA polymorphism, 10398A>G, was reported to affect mitochondrial calcium regulation. Volume of hippocampus and amygdala is reportedly associated with various mental disorders and mental functions and is regarded as an endophenotype of mental disorders. The present study investigated the relationship between the mtDNA 10398A>G polymorphism and the volume of hippocampus and amygdala in 118 right-handed healthy subjects. The brain morphometry using magnetic resonance images employed both manual tracing volumetry in the native space and voxel-based morphometry (VBM) in the spatially normalized space. Amygdala volume was found to be significantly larger in healthy subjects with 10398A than in those with 10398G by manual tracing, which was confirmed by the VBM. Brain volumes in the other gray matter regions and all white matter regions showed no significant differences associated with the polymorphism. These provocative findings might provide a clue to the complex relationship between mtDNA, brain structure and mental disorders. [source]


    Mitochondrial DNA mutations and mitochondrial DNA depletion in breast cancer

    GENES, CHROMOSOMES AND CANCER, Issue 7 2006
    Ling-Ming Tseng
    Somatic mutations in mitochondrial DNA (mtDNA) have been demonstrated in various tumors, including breast cancer. However, it still remains unclear whether the alterations in mtDNA are related to the clinicopathological features and/or the prognosis in the breast cancer. We analyzed somatic mutations in the D-loop region, the common 4,977-bp deletion, and the copy number of mtDNA in breast cancer and paired nontumorous breast tissues from 60 Taiwanese patients. We found that 18 of the 60 (30%) breast cancers displayed somatic mutations in mtDNA D-loop region. The incidence of the 4,977-bp deletion in nontumorous breast tissues (47%) was much higher than that in breast cancers (5%). The copy number of mtDNA was significantly decreased in 38 of the 60 (63%) breast cancers as compared to their corresponding nontumorous breast tissues (P = 0.0008). The occurrence of D-loop mutations was associated with an older onset age (,50 years old, P = 0.042), and tumors that lacked expressions of estrogen receptor and progesterone receptor (P = 0.024). Patients with mtDNA D-loop mutation and breast cancer had significantly poorer disease-free survival than those without mutation, when assessed by Kaplan,Meier curves and log-rank test (P = 0.005). Multivariate Cox regression analysis indicated that a D-loop mutation is a significant marker that is independent of other clinical variables and that it can be used to assess the prognosis of patients. Our findings suggest that somatic mutations in mtDNA D-loop can be used as a new molecular prognostic indicator in breast cancer. © 2006 Wiley-Liss, Inc. [source]


    Liver damage underlying unexplained transaminase elevation in human immunodeficiency virus-1 mono-infected patients on antiretroviral therapy,

    HEPATOLOGY, Issue 2 2009
    Patrick Ingiliz
    Liver damage associated with chronic unexplained high serum transaminases in human immunodeficiency virus (HIV)-infected patients under combined antiretroviral therapy is unknown. Liver histology was prospectively investigated in patients presenting serum transaminase elevation for more than 6 months, after exclusion of alcohol abuse, hepatitis C virus (HCV) or hepatitis B virus (HBV) infection, autoimmune, and genetic liver diseases. In a subgroup of patients, liver mitochondrial activities were measured by spectrophotometry and mitochondrial DNA (mtDNA) by real-time polymerase chain reaction (PCR). Thirty patients were included with median values of alanine aminotransferase (ALT) levels: 80 U/L, age: 46 years, body mass index: 23 kg/m2, HIV RNA: 200 copies/mL, CD4 count: 365/mm3, duration of HIV infection: 13 years, and duration of treatment exposure: 118, 41, and 53 months for nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, and protease inhibitors, respectively. Histological anomalies were found in 22 of 30 patients. Steatosis was present in 18 patients, severe in nine patients, and associated with inflammation in 16 patients with a diagnosis of non-alcoholic steatohepatitis (NASH). Fibrosis was found in 18 patients, severe in six patients and associated with steatosis in 13 patients. Significant liver respiratory complex I defect, contrasting with high complex IV activity and normal mitochondrial DNA content, was observed in the group of patients compared with controls. The presence of NASH was correlated with high fasting glycemia and insulin levels, not with liver mitochondrial function or mitochondrial DNA content. Conclusions: HIV-infected patients on combined antiretroviral therapy with chronic transaminase elevation of unknown origin have a high rate of liver lesions, mostly consistent with NASH related to insulin resistance. (HEPATOLOGY 2008.) [source]


    Quantitative analysis of human mitochondrial DNA using a real-time PCR assay

    HIV MEDICINE, Issue 3 2003
    K Gourlain
    Objectives Known for their ability to inhibit the human DNA polymerase-,, nucleoside analogues induce toxic effects on mitochondria ranging from increased serum lactate levels to fatal lactic acidosis. DNA polymerase-, ensures the mitochondrial DNA (mtDNA) replication and, thus, its inhibition leads to the decrease of the mtDNA. We describe a real-time PCR assay for mtDNA quantification associating DNA extraction procedures applied on peripheral blood mononuclear cells (PBMCs) and subcutaneous adipose tissues and to study the antiretroviral effect on mitochondria. Methods Total DNA was extracted from PBMCs and subcutaneous adipose tissues. Nuclear and mitochondrial genes were amplified to determine the number of copies of mtDNA per cell using a cyt-b recombinant plasmid as standard control. We analysed eight HIV-infected asymptomatic patients never treated, four patients who had been treated for 6 months with highly active antiretroviral therapy (HAART) and six non-infected donors. Results The mtDNA quantification gave rise to reproducible results as the mean coefficients of variation were 1.09% for replicates of samples undertaken 10 times within the same run, and 5.78% and 3.7% for replicates tested in five different runs at 1:100 and 1:1000 dilutions, respectively. Median levels of mtDNA in PBMCs of healthy donors, naive and treated HIV-infected patients were 2.94, 2.78 and 1.93 log HIV-1 RNA copies/mL, respectively. Whereas DNA from PBMCs was shown to be devoid of inhibitors, subcutaneous adipose tissues needed an extra treatment as they were found to be highly inhibited. Conclusions The method generated consistent and reproducible results and was successfully applied to DNAs extracted from PBMCs and subcutaneous adipose tissues with adapted extraction. The mtDNA changes in PBMCs were found to be fast as they fall off after 6 months' therapy, decreasing from 2.78 to 1.93 log copies/mL. [source]


    Identifying sequence variants in the human mitochondrial genome using high-resolution melt (HRM) profiling,

    HUMAN MUTATION, Issue 6 2009
    Steven F. Dobrowolski
    Abstract Identifying mitochondrial DNA (mtDNA) sequence variants in human diseases is complicated. Many pathological mutations are heteroplasmic, with the mutant allele represented at highly variable percentages. High-resolution melt (HRM or HRMA) profiling was applied to comprehensive assessment of the mitochondrial genome and targeted assessment of recognized pathological mutations. The assay panel providing comprehensive coverage of the mitochondrial genome utilizes 36 overlapping fragments (301,658,bp) that employ a common PCR protocol. The comprehensive assay identified heteroplasmic mutation in 33 out of 33 patient specimens tested. Allele fraction among the specimens ranged from 1 to 100%. The comprehensive assay panel was also used to assess 125 mtDNA specimens from healthy donors, which identified 431 unique sequence variants. Utilizing the comprehensive mtDNA panel, the mitochondrial genome of a patient specimen may be assessed in less than 1 day using a single 384-well plate or two 96-well plates. Specific assays were used to identify the myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) mutation m.3243A>G, myoclonus epilepsy, ragged red fibers (MERRF) mutation m.8344A>G, and m.1555A>G associated with aminoglycoside hearing loss. These assays employ a calibrated, amplicon-based strategy that is exceedingly simple in design, utilization, and interpretation, yet provides sensitivity to detect variants at and below 10% heteroplasmy. Turnaround time for the genotyping tests is about 1,hr. Hum Mutat 30,1,8, 2009. © 2009 Wiley-Liss, Inc. [source]