MSC Survival (msc + survival)

Distribution by Scientific Domains


Selected Abstracts


Combining angiogenic gene and stem cell therapies for myocardial infarction

THE JOURNAL OF GENE MEDICINE, Issue 9 2009
Jennifer Pons
Abstract Background Transplantation of stem cells from various sources into infarcted hearts has the potential to promote myocardial regeneration. However, the regenerative capacity is limited partly as a result of the low survival rate of the transplanted cells in the ischemic myocardium. In the present study, we tested the hypothesis that combining cell and angiogenic gene therapies would provide additive therapeutic effects via co-injection of bone marrow-derived mesenchymal stem cells (MSCs) with an adeno-associated viral vector (AAV), MLCVEGF, which expresses vascular endothelial growth factor (VEGF) in a cardiac-specific and hypoxia-inducible manner. Methods MSCs isolated from transgenic mice expressing green fluorescent protein and MLCVEGF packaged in AAV serotype 1 capsid were injected into mouse hearts at the border of ischemic area, immediately after occlusion of the left anterior descending coronary, individually or together. Engrafted cells were detected and quantified by real-time polymerase chain reaction and immunostaining. Angiogenesis and infarct size were analyzed on histological and immunohistochemical stained sections. Cardiac function was analyzed by echocardiography. Results We found that co-injection of AAV1-MLCVEGF with MSCs reduced cell loss. Although injection of MSCs and AAV1-MLCVEGF individually improved cardiac function and reduced infarct size, co-injection of MSC and AAV1-MLCVEGF resulted in the best improvement in cardiac function as well as the smallest infarct among all groups. Moreover, injection of AAV1-MLCVEGF induced neovasculatures. Nonetheless, injection of MSCs attracted endogenous stem cell homing and increased scar thickness. Conclusions Co-injection of MLCVEGF and MSCs in ischemic hearts can result in better cardiac function and MSC survival, compared to their individual injections, as a result of the additive effects of each therapy. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Optimization of Autologous Muscle Stem Cell Survival in the Denervated Hemilarynx,

THE LARYNGOSCOPE, Issue 7 2008
Stacey L. Halum MD
Abstract Objective: Current treatments for vocal fold paralysis are suboptimal in that they fail to restore dynamic function. Autologous muscle stem cell (MSC) therapy is a promising potential therapy for vocal fold paralysis in that it can attenuate denervation-induced muscle atrophy and provide a vehicle for delivery of neurotrophic factors, thereby potentially selectively guiding reinnervation. The goal of this project was to characterize optimal conditions for injected autologous MSC survival in the thyroarytenoid (TA) muscle following recurrent laryngeal nerve (RLN) injury by local administration of adjuvant factors. Study Design: Animal experiment. Methods: Unilateral RLN transection and sternocleidomastoid muscle (,1 g) biopsies were performed in 20 male Wistar rats. One month later, 106 autologous MSCs labeled via retroviral-enhanced green fluorescent protein (EGFP) transduction were injected into the denervated hemilarynx of each animal with one of four adjuvant therapies: cardiotoxin [(CTX) 10,5 M], insulin-like growth factor-1 [(IGF- 1) 100 ,g/mL], ciliary neurotrophic factor [(CNTF) 50 ,g/mL], or saline. Animals were euthanized 1 month later and larynges harvested, sectioned, and analyzed for MSC survival. Results: All specimens demonstrate extensive MSC survival, with fusion of the MSCs with the denervated myofibers. Based on mean fluorescent intensity of the laryngeal specimens, IGF-1 and CNTF had the greatest positive influence on MSC survival. Myofiber diameters demonstrated myofiber atrophy to be inversely related to MSC survival, with the least atrophy in the groups having the greatest MSC survival. Conclusions: Autologous MSC therapy may be a future treatment for vocal fold paralysis. These findings support a model whereby MSCs genetically engineered to secrete CNTF and/or IGF-1 may not only promote neural regeneration, but also enhance MSC survival in an autocrine fashion. [source]


Viscoelastic and Histologic Properties in Scarred Rabbit Vocal Folds After Mesenchymal Stem Cell Injection,

THE LARYNGOSCOPE, Issue 7 2006
S Hertegård MD
Abstract Objective/Hypothesis: The aim of this study was to analyze the short-term viscoelastic and histologic properties of scarred rabbit vocal folds after injection of human mesenchymal stem cells (MSC) as well as the degree of MSC survival. Because MSCs are antiinflammatory and regenerate mesenchymal tissues, can MSC injection reduce vocal fold scarring after injury? Study Design: Twelve vocal folds from 10 New Zealand rabbits were scarred by a localized resection and injected with human MSC or saline. Eight vocal folds were left as controls. Material and Methods: After 4 weeks, 10 larynges were stained for histology and evaluation of the lamina propria thickness. Collagen type I content was analyzed from six rabbits. MSC survival was analyzed by fluorescent in situ hybridization staining from three rabbits. Viscoelasticity for 10 vocal folds was analyzed in a parallel-plate rheometer. Results: The rheometry on fresh-frozen samples showed decreased dynamic viscosity and lower elastic modulus (P < .01) in the scarred samples injected with MSC as compared with the untreated scarred group. Normal controls had lower dynamic viscosity and elastic modulus as compared with the scarred untreated and treated vocal folds (P < .01). Histologic analysis showed a higher content of collagen type 1 in the scarred samples as compared with the normal vocal folds and with the scarred folds treated with MSC. MSCs remained in all samples analyzed. Conclusions: The treated scarred vocal folds showed persistent MSC. Injection of scarred rabbit vocal folds with MSC rendered improved viscoelastic parameters and less signs of scarring expressed as collagen content in comparison to the untreated scarred vocal folds. [source]


Aspirin induces apoptosis in mesenchymal stem cells requiring Wnt/,-catenin pathway

CELL PROLIFERATION, Issue 6 2009
L. Deng
Background and Objectives:, Mesenchymal stem cells (MSC) are multipotent progenitor cells that are have found use in regenerative medicine. We have previously observed that aspirin, a widely used anti-inflammatory drug, inhibits MSC proliferation. Here we have aimed to elucidate whether aspirin induces MSC apoptosis and whether this is modulated through the Wnt/,-catenin pathway. Materials and methods:, Apoptosis of MSCs was assessed using Hoechst 33342 dye and an Annexin V,FITC/PI Apoptosis Kit. Expression of protein and protein phosphorylation were investigated using Western blot analysis. Caspase-3 activity was detected by applying a caspase-3/CPP32 Colorimetric Assay Kit. Results:, In these MSCs, aspirin induced morphological changes characteristic of apoptosis, cytochrome c release from mitochondria, and caspase-3 activation. Stimulating the Wnt/,-catenin pathway by both Wnt 3a and GSK-3, inhibitors (LiCl and SB 216763), blocked aspirin-induced apoptosis and protected mitochondrial function, as demonstrated by decreased cytochrome c release and caspase-3 activity. Aspirin initially caused a time-dependent decrease in COX-2 expression but subsequently, and unexpectedly, elevated the latter. Stimulation of COX-2 expression by aspirin was further enhanced following stimulation of the Wnt/,-catenin pathway. Application of the COX-2 inhibitor NS-398 suppressed elevated COX-2 expression and promoted aspirin-induced apoptosis. Conclusion:, These results demonstrate that the Wnt/,-catenin pathway is a key modulator of aspirin-induced apoptosis in MSCs by regulation of mitochrondrial/caspase-3 function. More importantly, our findings suggest that aspirin may influence MSC survival under certain conditions; therefore, it should be used with caution when considering regenerative MSC transplantation in patients with concomitant chronic inflammatory diseases such as arthritis. [source]


Are mesenchymal stromal cells from children resistant to apoptosis?

CELL PROLIFERATION, Issue 3 2009
H. Dimitriou
Objectives:, Mesenchymal stromal cells (MSC) represent a novel cellular candidate in the field of transplantation and tissue regeneration. Their clinical application requires their in vitro expansion. The aim of this study was to assess the effect of conditions that would favour apoptosis, and of long-term expansion, on the characteristics of MSC from children. Materials and methods:, Bone marrow mononuclear cells were cultured for 10 passages (P1,P10). Expression of CD105, CD146, CD95 and apoptosis by 7-amino-actinomycin D staining were evaluated. CFU-F and cell doubling time (DT) were assessed in every passage. Cell-cycle study was performed at P2 and P6. Results:, CFU-F decreased from 38 ± 3.7 at P2 to 9.6 ± 3.2 per 10 MSC/cm2 at P10 and DT increased from 1.93 ± 0.1 (P2) to 6.1 ± 2.45 days (P10). A low percentage of apoptotic (dead) cells was detected at P2 and this did not change until P10. Cells at P2 were at G0/G1 phase, but in advanced passages more cells were in an active state. Induction of apoptosis (addition of anti-Fas agonist antibody) using standard culture conditions, showed a minor effect on MSC survival. Serum deprivation of MSC (up to 72 h) revealed no substantial apoptotic effect while cells retained their tri-lineage differentiation capacity. Conclusions:, We conclude that MSC from children retain their functional characteristics throughout serial passages and remain stable under conditions that usually cause apoptosis. These features render MSC, especially those of early passages, optimal candidates for use in clinical applications. [source]