Home About us Contact | |||
mRNA Transcripts (mrna + transcript)
Selected AbstractsTwo splicing isoforms of the Y-box protein ctYB-1 appear on the same mRNA moleculeFEBS JOURNAL, Issue 1 2007Dmitry Nashchekin Y-box proteins constitute an evolutionarily conserved family of DNA- and RNA-binding proteins involved in the regulation of transcription and translation. In the dipteran Chironomus tentans, a homologue to the vertebrate Y-box protein YB-1 was recently characterized and designated ctYB-1. It is transferred from nucleus to cytoplasm bound to mRNA and is likely to affect translation. It appears in two size variants, p40 and p50. We further analysed the two size variants and their interaction with mRNA. Southern blot analysis, in situ hybridization and RT-PCR analysis suggested that there is just one YB-1 gene, and that the two size variants represent splicing isoforms. In a C. tentans epithelial cell line, only p40 is present, whereas both variants appear together in eight tissues from fourth-instar larvae, although in somewhat different proportions. Furthermore, the appearance of the two isoforms was studied in relation to a specific 35,40 kb mRNA transcript in the salivary glands, the Balbiani ring mRNA. Because of their exceptional size, Balbiani ring messenger ribonucleoprotein particles in nucleoplasm and Balbiani ring polysomes in cytoplasm could be identified and selectively studied. We were able to establish that both isoforms are associated with both nuclear and cytoplasmic Balbiani ring mRNA. In addition, a p50-specific antibody coimmunoprecipitated p40 from Balbiani ring polysomes, suggesting that the two splicing isoforms are located along the same Balbiani ring mRNA molecule. The functional significance of the two isoforms is being discussed. [source] Interferon-, and lipopolysaccharide regulate the expression of Nramp2 and increase the uptake of iron from low relative molecular mass complexes by macrophagesFEBS JOURNAL, Issue 22 2000S. L. Wardrop The natural resistance associated macrophage protein 2 (Nramp2) is a transporter that is involved in iron (Fe) uptake from transferrin (Tf) and low molecular mass Fe complexes. Here we describe the effect of the inflammatory mediators interferon-, (IFN-,) and lipopolysaccharide (LPS) on the expression of Nramp2 mRNA and Fe uptake by cells of the macrophage lineage. After incubation of the RAW264.7 macrophage cell line with LPS there was a sevenfold increase in the expression of the 2.3 kb Nramp2 mRNA transcript when compared with the control, but little effect on the Nramp2 3.1 kb transcript. These results indicate differential regulation of the two transcripts. Treatment with LPS resulted in an increase in 59Fe uptake from 59Fe,nitrilotriacetic acid, while transferrin receptor (TfR) mRNA levels and 59Fe uptake from 59Fe,Tf were decreased. Paradoxically, at the same time, an increase in iron regulatory protein (IRP)1 RNA-binding activity was observed. Incubation with IFN-, (50 U·mL,1) resulted in a marked decrease in TfR mRNA levels but had no effect on Nramp2 mRNA expression. Exposure of RAW264.7 cells to both IFN-, and LPS resulted in a fourfold increase in the Nramp2 2.3-kb transcript and a four to fivefold decrease in the 3.1-kb transcript when compared with the control. Furthermore, there was a decrease in TfR mRNA levels despite an increase in IRP1 RNA-binding activity and a marked increase in inducible nitric oxide synthase mRNA expression. Hence, TfR and Nramp2 mRNA expression did not appear to be regulated in a concerted manner. Similar responses to those found above for RAW264.7 cells were also observed in the J774 macrophage cell line and also for primary cultures of mouse peritoneal macrophages. These results are of interest as the TfR and Nramp2 are thought to act together during Fe uptake from Tf. This is the first report to demonstrate regulation of the Nramp2 mRNA transcripts by inflammatory mediators. [source] Spectrum of mutations in MMACHC, allelic expression, and evidence for genotype,phenotype correlations,HUMAN MUTATION, Issue 7 2009Jordan P. Lerner-Ellis Abstract Methylmalonic aciduria and homocystinuria, cblC type, is a rare disorder of intracellular vitamin B12 (cobalamin [Cbl]) metabolism caused by mutations in the MMACHC gene. MMACHC was sequenced from the gDNA of 118 cblC individuals. Eleven novel mutations were identified, as well as 23 mutations that were observed previously. Six sequence variants capture haplotype diversity in individuals across the MMACHC interval. Genotype,phenotype correlations of common mutations were apparent; individuals with c.394C>T tend to present with late-onset disease whereas patients with c.331C>T and c.271dupA tend to present in infancy. Other missense variants were also associated with late- or early-onset disease. Allelic expression analysis was carried out on human cblC fibroblasts compound heterozygous for different combinations of mutations including c.271dupA, c.331C>T, c.394C>T, and c.482G>A. The early-onset c.271dupA mutation was consistently underexpressed when compared to control alleles and the late-onset c.394C>T and c.482G>A mutations. The early-onset c.331C>T mutation was also underexpressed when compared to control alleles and the c.394C>T mutation. Levels of MMACHC mRNA transcript in cell lines homozygous for c.271dupA, c.331C>T, and c.394C>T were assessed using quantitative real-time RT-PCR. Cell lines homozygous for the late onset c.394C>T mutation had significantly higher levels of transcript when compared to cell lines homozygous for the early-onset mutations. Differential or preferential MMACHC transcript levels may provide a clue as to why individuals carrying c.394C>T generally present later in life. Hum Mutat 30:1,10, 2009. © 2009 Wiley-Liss, Inc. [source] Cloning of rat lymphocyte activation gene-3 (Lag3; CD223) cDNA and its mRNA expression in rat tissues,INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 1 2004T. Chun Summary Rat lymphocyte activation gene-3 (Lag3; CD223) cDNA contains an open reading frame (1575 bp) encoding 525 amino acids. Rat Lag3 mRNA transcript was detected as a single species of approximately 2 kb from phytohemagglutinin (PHA)-stimulated lymphocytes. Further analysis revealed that rat Lag3 mRNA was mainly expressed in lymphoid tissues. [source] Expression of Oryza sativa MAP kinase gene is developmentally regulated and stress-responsivePHYSIOLOGIA PLANTARUM, Issue 4 2002Hao-Jen Huang Mitogen-activated protein kinase (MAPK) pathways are modules involved in the transduction of extracellular signals to intracellular targets in all eukaryotes. In plants, there is evidence for MAPKs playing a role in the signalling of abiotic stresses, pathogens, plant hormones, and cell cycle cues. The large number and divergence of plant MAPKs indicates that this ancient mechanism of signal transduction is extensively used in plants. However, there have been no reports of classical MAPK module in rice. In this report, we have isolated a MAPK from rice (Oryza sativa) termed OsMAPK2. The cloned cDNA is 1457 nucleotides long and the deduced amino acid sequence comprised 369 amino acid residues. Sequence analysis revealed that the predicted amino acid sequence is 72% identical to tobacco wound-induced protein kinase (WIPK). Southern analysis suggested a single OsMAPK2 gene in rice. Analysis at the mRNA level has shown that OsMAPK2 is expressed in all plant organs and high relative amounts of OsMAPK2 were detected in the mature panicles in comparison with in the immature panicles. In suspension-cultured cells, the OsMAPK2 mRNA transcript increased markedly upon temperature downshift from 26°C to 4°C and sucrose starvation. In contrast, the OsMAPK2 mRNA level rapidly declined in rice cell challenged by high temperature. A similarly rapid response of OsMAPK2 was observed in stress-treated seedlings, demonstrating that response of the MAPK pathway occurs also in intact plants. These results suggest that this OsMAPK2 may function in the stress-signalling pathway as well as panicle development in rice. [source] Tyrosine hydroxylase-positive neurons intrinsic to the human striatum express the transcription factor Nurr1EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2004Martine Cossette Abstract The putative dopaminergic (DA) neurons intrinsic to human striatum were studied to determine their similarity with DA neurons of the substantia nigra pars compacta (SNpc). The comparison was based on morphological features and on the presence or absence of Nurr1, an orphan receptor of the nuclear receptor family that is essential for the expression of DA phenotype by developing SNpc neurons. Immunohistochemistry for the neuronal nuclear protein (NeuN; a neuronal marker) and in situ hybridization for tyrosine hydroxylase (TH) and/or Nurr1 were applied to post-mortem tissue obtained from seven normal individuals. On one hand, the TH-positive multipolar neurons in the human striatum, which were subdivided into three groups according to their size and pattern of dendritic arborization, were found to be morphologically similar to TH-positive neurons of the SNpc. The distribution frequency of striatal TH-positive neurons, according to their diameter, closely matches the frequency observed for multipolar TH-positive cells in the SNpc. On the other hand, the proportion of neurons expressing Nurr1 and TH mRNA transcripts on single striatal section was similar to the proportion of TH-immunoreactive neurons observed on adjacent sections. More importantly, in each striatum analysed, virtually all cells that stained for TH also expressed NeuN and Nurr1. This study provides novel data that confirm the existence of DA neurons intrinsic to the human striatum. It also provides the first evidence for the existence of striking morphological and chemical similarities between the DA neurons present at striatal level and those that populate the SNpc. [source] Interferon-, and lipopolysaccharide regulate the expression of Nramp2 and increase the uptake of iron from low relative molecular mass complexes by macrophagesFEBS JOURNAL, Issue 22 2000S. L. Wardrop The natural resistance associated macrophage protein 2 (Nramp2) is a transporter that is involved in iron (Fe) uptake from transferrin (Tf) and low molecular mass Fe complexes. Here we describe the effect of the inflammatory mediators interferon-, (IFN-,) and lipopolysaccharide (LPS) on the expression of Nramp2 mRNA and Fe uptake by cells of the macrophage lineage. After incubation of the RAW264.7 macrophage cell line with LPS there was a sevenfold increase in the expression of the 2.3 kb Nramp2 mRNA transcript when compared with the control, but little effect on the Nramp2 3.1 kb transcript. These results indicate differential regulation of the two transcripts. Treatment with LPS resulted in an increase in 59Fe uptake from 59Fe,nitrilotriacetic acid, while transferrin receptor (TfR) mRNA levels and 59Fe uptake from 59Fe,Tf were decreased. Paradoxically, at the same time, an increase in iron regulatory protein (IRP)1 RNA-binding activity was observed. Incubation with IFN-, (50 U·mL,1) resulted in a marked decrease in TfR mRNA levels but had no effect on Nramp2 mRNA expression. Exposure of RAW264.7 cells to both IFN-, and LPS resulted in a fourfold increase in the Nramp2 2.3-kb transcript and a four to fivefold decrease in the 3.1-kb transcript when compared with the control. Furthermore, there was a decrease in TfR mRNA levels despite an increase in IRP1 RNA-binding activity and a marked increase in inducible nitric oxide synthase mRNA expression. Hence, TfR and Nramp2 mRNA expression did not appear to be regulated in a concerted manner. Similar responses to those found above for RAW264.7 cells were also observed in the J774 macrophage cell line and also for primary cultures of mouse peritoneal macrophages. These results are of interest as the TfR and Nramp2 are thought to act together during Fe uptake from Tf. This is the first report to demonstrate regulation of the Nramp2 mRNA transcripts by inflammatory mediators. [source] Unique epithelial cell production of hepatocyte growth factor/scatter factor by putative precancerous intestinal metaplasias and associated "intestinal-type" biliary cancer chemically induced in rat liverHEPATOLOGY, Issue 6 2000Guan-Hua Lai Recently, we observed that Met, the receptor for hepatocyte growth factor/scatter factor (HGF/SF), is overexpressed in epithelial cells of both early-appearing intestinal metaplastic glands in precancerous hepatic cholangiofibrotic tissue and neoplastic glands in later developed intestinal-type of cholangiocarcinoma originated from the furan rat model of cholangiocarcinogenesis when compared with normal and hyperplastic intrahepatic biliary epithelia. We now show that HGF/SF is also aberrantly expressed in a manner closely paralleling that of its receptor in the neoplastic epithelial cells of furan-induced rat cholangiocarcinomas and in a majority of metaplastic epithelial cells within earlier formed precancerous hepatic cholangiofibrotic tissue. Using in situ hybridization and reverse transcription-polymerase chain reaction (RT-PCR), we further showed specific expression of HGF/SF messenger RNA (mRNA) in a novel rat cholangiocarcinoma epithelial cell line overexpressing Met. This cholangiocarcinoma cell line, termed C611B, was established from tumorigenic cells isolated from a furan-induced transplantable tumor. Moreover, we detected by in situ hybridization strong expression of HGF/SF mRNA transcripts in the cancerous epithelial glands of cholangiocarcinoma developed in recipient rats after in vivo cell transplantation of C611B cells. In contrast, mRNA transcripts and protein immunoreactivity for this cytokine were not detected in hepatocytes and biliary epithelial cells in adult normal rat liver nor in rat hyperplastic intrahepatic biliary epithelium. Our results clearly show that HGF/SF becomes aberrantly expressed in cholangiocarcinoma epithelium and in putative precancerous intestinal metaplastic epithelium induced in the liver of furan-treated rats. [source] A common variant in MTHFD1L is associated with neural tube defects and mRNA splicing efficiency,HUMAN MUTATION, Issue 12 2009Anne Parle-McDermott Abstract Polymorphisms in folate-related genes have emerged as important risk factors in a range of diseases including neural tube defects (NTDs), cancer, and coronary artery disease (CAD). Having previously identified a polymorphism within the cytoplasmic folate enzyme, MTHFD1, as a maternal risk factor for NTDs, we considered the more recently identified mitochondrial paralogue, MTHFD1L, as a candidate gene for NTD association. We identified a common deletion/insertion polymorphism, rs3832406, c.781-6823ATT(7,9), which influences splicing efficiency and is strongly associated with NTD risk. Three alleles of rs3832406 were detected in the Irish population with varying numbers of ATT repeats: Allele 1 consists of ATT7, whereas Alleles 2 and 3 consist of ATT8 and ATT9, respectively. Allele 2 of this triallelic polymorphism showed a decreased case risk as demonstrated by case,control logistic regression (P=0.002) and by transmission disequilibrium test (TDT) (P=0.001), whereas Allele 1 showed an increased case risk. Allele 3 showed no influence on NTD risk and represents the lowest frequency allele (0.15). Additional single nucleotide polymorphism (SNP) genotyping in the same genomic region provides additional supportive evidence of an association. We demonstrate that two of the three alleles of rs3832406 are functionally different and influence the splicing efficiency of the alternate MTHFD1L mRNA transcripts. Hum Mutat 30:1,7, 2009. © 2009 Wiley-Liss, Inc. [source] Deletions removing the last exon of TACSTD1 constitute a distinct class of mutations predisposing to Lynch syndrome,HUMAN MUTATION, Issue 2 2009Marietta E. Kovacs Abstract Several different genetic alterations in the etiology of Lynch syndrome (hereditary nonpolyposis colorectal cancer [HNPCC]) are known, mostly point mutations and genomic rearrangements in 1 of at least 3 mismatch-repair (MMR) genes. However, no susceptibility factor has yet been identified in a significant part (30,50%) of clinicopathologically well-defined HNPCC families, suggesting the presence of other predisposing mechanisms. In a set of probands from 27 Lynch syndrome families who lacked evidence of a germline mutation in either the MSH2 or MLH1 gene, we performed genomic deletion screening with the use of multiplex ligation-dependent probe amplification (MLPA) and sequencing. We used immunohistochemistry (IHC) and microsatellite instability (MSI) analyses on samples of the probands of all families. Comparative analysis of mRNA transcripts was performed on blood leukocyte,derived samples from mutation carriers and noncarrier controls. We report that large germline deletions encompassing the last exons of the TACSTD1 gene, upstream of MSH2, cosegregate with the HNPCC phenotype in 19% (5/27) of families tested. The tumors of the carriers show high-level MSI and MSH2 protein loss. We show that these deletions, by removing the transcriptional termination sequences of the upstream gene, give rise to multiple TACSTD1/MSH2 fusion transcripts. Our results provide evidence that deletions removing the last exon of TACSTD1 constitute a distinct class of mutations predisposing to Lynch syndrome. Thus, analysis of the 3, region of the TACSTD1 gene should be included in the routine mutation screening protocols for HNPCC. Hum Mutat 30, 197,203, 2009. © 2009 Wiley-Liss, Inc. [source] Identification and characterization of antimicrobial peptide, defensin, in the taiga tick, Ixodes persulcatusINSECT MOLECULAR BIOLOGY, Issue 4 2009Y. Saito Abstract Ixodes persulcatus is the primary vector for human tick-borne diseases in Japan. A cDNA library was constructed from whole body homogenates of fed nymphs of I. persulcatus. From this library, one cDNA encoding defensin-like antimicrobial peptide was identified. The amino-acid sequence showed high similarity to those of the defensins of other ticks and arthropods. I. persulcatus defensin mRNA transcripts were detected at all life cycle stages of fed ticks and found to be predominantly expressed in the midguts of adult female ticks, but not in the salivary glands, a finding corroborated by Western blotting analysis. To investigate the function of I. persulcatus defensin, we examined its antibacterial activity by evaluation of growth of several bacterial strains in the presence of the synthetic peptide. The defensin from I. persulcatus markedly inhibited the growth of Gram-positive bacteria including Staphylococcus aureus, Bacillus subtilis and Corynebacterium renale, but not Gram-negative bacteria except Escherichia coli O157. In conclusion, these results suggest that I. persulcatus defensin may be playing a significant role in the defence against microbes from bloodmeals. [source] Dental pulp fibroblasts express neuropeptide Y Y1 receptor but not neuropeptide YINTERNATIONAL ENDODONTIC JOURNAL, Issue 10 2010S. A. Killough Killough SA, Lundy FT, Irwin CR. Dental pulp fibroblasts express neuropeptide Y Y1 receptor but not neuropeptide Y. International Endodontic Journal, 43, 835,842, 2010. Abstract Aim, To investigate whether dental pulp fibroblasts express neuropeptide Y (NPY) and NPY-Y1 in vitro and to determine the effects of the cytokines including interlukin-1, (IL-1,), TGF- ,1, substance P and NPY on the expression of NPY Y1. Methodology, Three primary fibroblast cell strains were obtained from freshly extracted human third molar teeth. RT-PCR was utilized to detect expression of NPY and mRNA expression. Membrane protein samples were isolated, and protein expression was determined by Western blotting. Radioimmunoassay was used to quantify NPY expression in healthy (n = 35) and carious (n = 39) whole pulp samples, and the student's t -test was used to test for statistical significance. In addition, the 3-(4,5-Dimethylthiazol,2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to assay fibroblast cell growth. Results, mRNA transcripts were found in all three fibroblast cell populations with the cytokines having a stimulatory effect on its expression (P < 0.05). NPY mRNA was not detected in the cell strains. NPY-Y1 receptor protein expression was visualized by Western blotting, and there was no effect of IL-1, or TGF- ,1 on its expression. The mean concentration of NPY-Ir determined by radioimmunoassay in non-carious teeth was 19.40 ng g,1 (±17.03 SD) compared to 29.95 ng g,1 (±20.99 SD) in carious teeth (P < 0.05). Conclusion, Human dental pulp fibroblasts express, but do not synthesize, NPY, demonstrating that the fibroblast is a target cell for NPY. The effect of proinflammatory cytokines suggests that fibroblasts play a neuroimmunomodulatory role in the pulpal response to dental caries and injury. [source] Detection of bone marrow-disseminated breast cancer cells using an RT-PCR assay of MUC5B mRNAINTERNATIONAL JOURNAL OF CANCER, Issue 4 2003Nora Berois Abstract The evaluation of disseminated epithelial tumor cells in breast cancer patients has generated considerable interest due to its potential association with disease recurrence. Our work was performed to analyze the usefulness of 5 mucin genes expression (MUC2, MUC3, MUC5B, MUC6 and MUC7), using RT-PCR assays, to detect disseminated cancer cells in patients with operable breast cancer. The highest frequencies of positive RT-PCR tests in breast tumor extracts were observed for MUC5B (7/15) and MUC7 (5/12). The best specificity, negative results on all peripheral blood mononuclear (PBMN) cell samples from healthy donors, were shown for MUC2, MUC5B and MUC6 RT-PCR assays. Thus, we selected MUC5B as a target gene for further evaluation. Using a nested RT-PCR, MUC5B mRNA transcripts were detected in 16/31 primary breast tumors (but not in 36 samples of normal PBMN cells) and in the human MCF-7 breast cancer cell line but not in BT20, MDA, T47D and ZR-75 breast cancer cell lines, indicating that MUC5B mRNA is expressed in a population of breast cancer cells. Using this method, 9/46 patients (19.5%) who underwent curative surgery showed positive MUC5B mRNA in bone marrow aspirates obtained prior to surgery, including 5/24 patients (20.8%) with stage I or II breast cancer, without histopathologic lymph node involvement. These results indicate that MUC5B mRNA could be a specific marker applicable to the molecular diagnosis of breast cancer cell dissemination. A comparative evaluation between MUC5B mRNA, cytokeratin 19 (CK19) mRNA and carcinoembryonic antigen (CEA) mRNA in all bone marrow aspirates suggests a putative complementation for molecular detection of disseminated carcinoma cells. Considering that breast cancer is characterized by a great phenotypic heterogeneity, the use of multimarker approach could contribute to tumor cell detection in bone marrow and blood. © 2002 Wiley-Liss, Inc. [source] Toxicogenomics: a pivotal piece in the puzzle of toxicological researchJOURNAL OF APPLIED TOXICOLOGY, Issue 4 2007Elisavet T. Gatzidou Abstract Toxicogenomics, resulting from the merge of conventional toxicology with functional genomics, being the scientific field studying the complex interactions between the cellular genome, toxic agents in the environment, organ dysfunction and disease state. When an organism is exposed to a toxic agent the cells respond by altering the pattern of gene expression. Genes are transcribed into mRNA, which in turn is translated into proteins that serve in a variety of cellular functions. Toxicogenomics through microarray technology, offers large-scale detection and quantification of mRNA transcripts, related to alterations in mRNA stability or gene regulation. This may prove advantageous in toxicological research. In the present review, the applications of toxicogenomics, especially to mechanistic and predictive toxicology are reported. The limitations arising from the use of this technology are also discussed. Additionally, a brief report of other approaches, using other -omic technologies (proteomics and metabonomics) that overcome limitations and give global information related to toxicity, is included. Copyright © 2007 John Wiley & Sons, Ltd. [source] Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiationJOURNAL OF NEUROCHEMISTRY, Issue 3 2008Michelle L. Olsen Abstract Astrocytes and oligodendrocytes are characterized by a very negative resting potential and a high resting permeability for K+ ions. Early pharmacological and biophysical studies suggested that the resting potential is established by the activity of inwardly rectifying, Ba2+ sensitive, weakly rectifying Kir channels. Molecular cloning has identified 16 Kir channels genes of which several mRNA transcripts and protein products have been identified in glial cells. However, genetic deletion and siRNA knock-down studies suggest that the resting conductance of astrocytes and oligodendrocytes is largely due to Kir4.1. Loss of Kir4.1 causes membrane depolarization, and a break-down of K+ and glutamate homeostasis which results in seizures and wide-spread white matter pathology. Kir channels have also been shown to act as critical regulators of cell division whereby Kir function is correlated with an exit from the cell cycle. Conversely, loss of functional Kir channels is associated with re-entry of cells into the cell cycle and gliosis. A loss of functional Kir channels has been shown in a number of neurological diseases including temporal lobe epilepsy, amyotrophic lateral sclerosis, retinal degeneration and malignant gliomas. In the latter, expression of Kir4.1 is sufficient to arrest the aberrant growth of these glial derived tumor cells. Kir4.1 therefore represents a potential therapeutic target in a wide variety of neurological conditions. [source] Dependence of Hyperpolarisation-Activated Cyclic Nucleotide-Gated Channel Activity on Basal Cyclic Adenosine Monophosphate Production in Spontaneously Firing GH3 CellsJOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2006K. Kretschmannova Abstract The hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels play a distinct role in the control of membrane excitability in spontaneously active cardiac and neuronal cells. Here, we studied the expression and role of HCN channels in pacemaking activity, Ca2+ signalling, and prolactin secretion in GH3 immortalised pituitary cells. Reverse transcriptase-polymerase chain reaction analysis revealed the presence of mRNA transcripts for HCN2, HCN3 and HCN4 subunits in these cells. A hyperpolarisation of the membrane potential below ,,60 mV elicited a slowly activating voltage-dependent inward current (Ih) in the majority of tested cells, with a half-maximal activation voltage of ,89.9 ± 4.2 mV and with a time constant of 1.4 ± 0.2 s at ,120 mV. The bath application of 1 mM Cs+, a commonly used inorganic blocker of Ih, and 100 µM ZD7288, a specific organic blocker of Ih, inhibited Ih by 90 ± 4.1% and 84.3 ± 1.8%, respectively. Receptor- and nonreceptor-mediated activation of adenylyl and soluble guanylyl cyclase and the addition of a membrane permeable cyclic adenosine monophosphate (cAMP) analogue, 8-Br-cAMP, did not affect Ih. Inhibition of basal adenylyl cyclase activity, but not basal soluble guanylyl cyclase activity, led to a reduction in the peak amplitude and a leftward shift in the activation curve of Ih by 23.7 mV. The inhibition of the current was reversed by stimulation of adenylyl cyclase with forskolin and by the addition of 8-Br-cAMP, but not 8-Br-cGMP. Application of Cs+ had no significant effect on the resting membrane potential or electrical activity, whereas ZD7288 exhibited complex and Ih -independent effects on spontaneous electrical activity, Ca2+ signalling, and prolactin release. These results indicate that HCN channels in GH3 cells are under tonic activation by basal level of cAMP and are not critical for spontaneous firing of action potentials. [source] Expression of Three Gene Families Encoding Cell,Cell Communication Molecules in the Prepubertal Nonhuman Primate HypothalamusJOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2005A. E. Mungenast Abstract Transsynaptic and glial,neuronal communication are important components of the mechanism underlying the pubertal activation of luteinizing hormone-releasing hormone (LHRH) secretion. The molecules required for the architectural organization of these cell,cell interactions have not been identified. We now show that the hypothalamus of the prepubertal female rhesus monkey expresses a multiplicity of genes encoding three families of adhesion/signalling proteins involved in the structural definition of both neurone-to-neurone and bi-directional neurone,glia communication. These include the neurexin/neuroligin (NRX/NRL) and protocadherin-, (PCDH,) families of synaptic specifiers/adhesion molecules, and key components of the contactin-dependent neuronal,glial adhesiveness complex, including contactin/F3 itself, the contactin-associated protein-1 (CASPR1), and the glial receptor protein tyrosine phosphatase ,. Prominently expressed among members of the NRX family is the neurexin isoform involved in the specification of glutamatergic synapses. Although NRXs, PCDH,s and CASPR1 transcripts are mostly detected in neurones, the topography of expression appears different. NRX1 mRNA-containing neurones are scattered throughout the hypothalamus, PCDH, mRNA transcripts appear more abundant in neurones of the arcuate nucleus and periventricular region, and neurones positive for CASPR1 mRNA exhibit a particularly striking distribution pattern that delineates the hypothalamus. Examination of LHRH neurones, using the LHRH-secreting cell line GT1-7, showed that these cells contain transcripts encoding NRXs and one of their ligands (NRL1), at least one PCDH, (CNR-8/PCDH,10), and the CASPR1/contactin complex. The results indicate that the prepubertal female monkey hypothalamus contains a plethora of adhesion/signalling molecules with different but complementary functions, and that an LHRH neuronal cell line expresses key components of this structural complex. The presence of such cell,cell communication machinery in the neuroendocrine brain suggests an integrated participation of their individual components in the central control of female sexual development. [source] Multilineage mesenchymal differentiation potential of human trabecular bone-derived cellsJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2002Ulrich Nöth Abstract Explant cultures of adult human trabecular bone fragments give rise to osteoblastic cells, that are known to express osteoblast-related genes and mineralize extracellular matrix. These osteoblastic cells have also been shown to undergo adipogenesis in vitro and chondrogenesis in vivo. Here we report the in vitro developmental potential of adult human osteoblastic cells (hOB) derived from explant cultures of collagenase-pretreated trabecular bone fragments. In addition to osteogenic and adipogenic differentiation, these cells are capable of chondrogenic differentiation in vitro in a manner similar to adult human bone marrow-derived mesenchymal progenitor cells. High-density pellet cultures of hOB maintained in chemically defined serum-free medium, supplemented with transforming growth factor-,1, were composed of morphologically distinct, chondrocyte-like cells expressing mRNA transcripts of collagen types II, IX and X, and aggrecan. The cells within the high-density pellet cultures were surrounded by a sulfated prote-oglycan-rich extracellular matrix that immunostained for collagen type II and proteoglycan link protein. Osteogenic differentiation of hOB was verified by an increased number of alkaline phosphatase-positive cells, that expressed osteoblast-related transcripts such as alkaline phosphatase, collagen type I, osteopontin and osteocalcin, and formed mineralized matrix in monolayer cultures treated with ascorbate, ,-glycerophosphate, and bone morphogenetic protein-2. Adipogenic differentiation of hOB was determined by the appearance of intracellular lipid droplets, and expression of adipocyte-specific genes, such as lipoprotein lipase and peroxisome proliferator-activated receptor ,2, in monolayer cultures treated with dexamethasone, indomethacin, insulin and 3-isobutyl-l-methylxanthine. Taken together, these results show that cells derived from collagenase-treated adult human trabecular bone fragments have the potential to differentiate into multiple mesenchymal lineages in vitro, indicating their developmental plasticity and suggesting their mesenchymal progenitor nature. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source] Hepatitis B viral X protein alters the biological features and expressions of DNA repair enzymes in LO2 cellsLIVER INTERNATIONAL, Issue 2 2010Bin Cheng Abstract Objectives: This study aimed at examining the effects of hepatitis B viral X protein (HBx) on the biological features and the expression of DNA repair enzymes in non-tumour human hepatic LO2 cells in vitro. Methods: The HBx gene was transfected into LO2 cells to establish stably HBx-expressing LO2/HBx cells. The morphological features, cell growth, cell cycle, apoptosis and colony formation of LO2/HBx cells, vector-transfected LO2/pcDNA3.1 cells and unmanipulated LO2 cells were studied. The expressions of DNA repair enzymes and DNA oxidative stress-related 8-hydroxydeoxyguanosine (8-OHdG) were determined by a real-time quantitative polymerase chain reaction assay and high-performance liquid chromatography coupled with electrochemical detection respectively. Results: In comparison with controls, significant morphological changes, faster growth, higher frequency of cells at the S phase, but lower at G0/G1 and M/G2 phases, a lower frequency of natural cell apoptosis and a higher percentage of colony formation were observed in the LO2/HBx cells. Furthermore, significantly higher levels of intracellular 8-OHdG and lower levels of human DNA glycosylase , (hMYH,) mRNA transcripts, but no significant change in human 8-oxoguanine DNA glycosylase 1 (hOGG1), were detected in the LO2/HBx cells. Conclusions: Our data indicated that HBx promoted growth and malignant transformation of non-tumour hepatic LO2 cells in vitro, which was associated with the downregulation of hMYH, expression and accumulation of mutagenic DNA adduct 8-OHdG. [source] Copper treatment activates mitogen-activated protein kinase signalling in ricePHYSIOLOGIA PLANTARUM, Issue 3 2003Chuan-Ming Yeh It is well known that mitogen-activated protein kinase (MAPK) pathways are modules involved in the transduction of extracellular signals to intracellular targets in all eukaryotes. In plants, it has been shown that MAPKs play a role in the signalling of biotic and abiotic stresses. To characterize signalling pathways involved in heavy metal-induced stress responses, we examine whether plant MAPKs are also involved in this process. The analyses of mRNA levels of OsMAPK genes have shown that only OsMAPK2 mRNA transcripts increased within 12 h upon CuCl2 treatment in suspension cells and roots. An in-gel kinase assay revealed that three protein kinases, approximate 42, 50, and 64-kDa, were activated by CuCl2 treatments. The approximate 42-kDa protein kinase displayed MAPK properties. Antioxidant, GSH, prevented copper-induced kinase activity. Furthermore, we found that rice roots underwent a rapid cell death upon this copper treatment. The copper-induced cell death of rice roots was partially blocked by MAPK kinase inhibitor, PD98059. These results suggest that the MAPK cascades may function in the plant heavy metal induced-signalling pathway. [source] Down-Regulated PAR-2 is Associated in Part with Interrupted Melanosome Transfer in Pigmented Basal Cell EpitheliomaPIGMENT CELL & MELANOMA RESEARCH, Issue 4 2004Kazuko Sakuraba In pigmented basal cell epithelioma (BCE), there seems to be an abnormal transfer of melanized melanosomes from proliferating melanocytes to basaloid tumor cells. In this study, the interruption of that melanosome transfer was studied with special respect to the altered function of a phagocytic receptor, protease-activated receptor (PAR)-2 in the basaloid tumor cells. We used electron microscopy to clarify the disrupted transfer at the ultrastructural level and then performed immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) to examine the regulation of a phagocytic receptor, PAR-2, expressed on basaloid tumor cells. Electron microscopic analysis revealed that basaloid tumor cells of pigmented BCE have a significantly lower population of melanosomes (,16.4%) than do normal keratinocytes located in the perilesional normal epidermis (,91.0%). In contrast, in pigmented seborrheic keratosis (SK), a similarly pigmented epidermal tumor, the distribution of melanin granules does not differ between the lesional (,93.9%) and the perilesional normal epidermis (,92.2 %), indicating that interrupted melanosome transfer occurs in BCE but not in all pigmented epithelial tumors. RT-PCR analysis demonstrated that the expression of PAR-2 mRNA transcripts in basaloid cells is significantly decreased in pigmented BCE compared with the perilesional normal epidermis. In contrast, in pigmented SK, where melanosome transfer to basaloid tumor cells is not interrupted, the expression of PAR-2 mRNA transcripts is comparable between the basaloid tumor cells and the perilesional normal epidermis. Immunohistochemistry demonstrated that basaloid cells in pigmented BCE have less immunostaining for PAR-2 than do keratinocytes in the perilesional normal epidermis whereas in pigmented SK, there is no difference in immunostaining for PAR-2 between the basaloid tumor and the perilesional normal epidermis. These findings suggest that the decreased expression of PAR-2 in the basaloid cells is associated in part with the observed interruption of melanosome transfer in pigmented BCE. [source] Revealing frequent alternative polyadenylation and widespread low-level transcription read-through of novel plant transcription terminatorsPLANT BIOTECHNOLOGY JOURNAL, Issue 7 2010Aiqiu Xing Summary Plant genetic engineering can create transgenic crops with improved characteristics by introducing trait genes through transformation. Appropriate regulatory elements such as promoters and terminators have to be present in certain configurations for the transgenes to be properly expressed. Five terminators native to soybean genes-encoding a MYB family transcription factor (MYB2), a Kunitz trypsin inhibitor (KTI1), a plasma membrane intrinsic protein (PIP1), a translation elongation factor (EF1A2) and a metallothionein protein (MTH1) were cloned and tested for their ability to enable transgene expression, mRNA polyadenylation and transcription termination. The terminators are as good as a control terminator of the potato proteinase inhibitor II gene (PINII) in conferring proper transgene expression, leading to mRNAs with various polyadenylation sites and terminating mRNA transcripts. RNA transcription read-through was detected in all transgenic plants and was quantified by qRT-PCR to be <1% at positions ,1 kb downstream of the 5, ends of different terminators. The detection of read-through RNA transcripts of the corresponding endogenous genes up to approximately 1 kb beyond the polyadenylation sites suggests that limited RNA transcription read-through is a normal phenomenon of gene expression. The study also provided more choices of terminators for plant genetic engineering when constructing DNA constructs containing multiple gene expression cassettes. [source] Proteins differentially expressed in response to nicotine in five rat brain regions: Identification using a 2-DE/MS-based proteomics approachPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 10 2006Yoon Y. Hwang Abstract To determine protein expression patterns within the central nervous system,(CNS) in response to nicotine, 2-DE/MS was performed on samples from five brain regions of rats that had received nicotine bitartrate by osmotic minipump infusion at a dose of 3.15,mg/kg/day for 7,days. After spot matching and statistical analysis, 41,spots in the amygdala, 49 in the nucleus accumbens,(NA), 46 in the prefrontal cortex (PFC), 36 in the striatum, and 28 in the ventral tegmental area,(VTA) showed significant differences in the nicotine-treated compared with control samples. Using MALDI-TOF,MS peptide fingerprinting, 14,proteins in the amygdala, 11 in the NA, 19 in the PFC, 13 in the striatum, and 19 in the VTA were identified. Several proteins (e.g. dynamin,1, laminin receptors, aldolase,A, enolase,1 alpha, Hsc70-ps1, and N -ethylmaleimide-sensitive fusion protein) were differentially expressed in multiple brain regions. By gene ontology analysis, these differentially expressed proteins were grouped into biological process categories, such as energy metabolism, synaptic function, and oxidative stress metabolism. These data, in combination with microarray analysis of mRNA transcripts, have the potential to identify the CNS gene products that show coordinated changes in expression at both the RNA and protein levels in response to nicotine. [source] MicroRNA and proteome expression profiling in early-symptomatic ,-synuclein(A30P)-transgenic micePROTEOMICS - CLINICAL APPLICATIONS, Issue 5 2008Frank Gillardon Dr. Abstract The ,-synuclein has been implicated in the pathophysiology of Parkinson's disease (PD), because mutations in the alpha-synuclein gene cause autosomal-dominant hereditary PD and fibrillary aggregates of alpha-synuclein are the major component of Lewy bodies. Since presynaptic accumulation of ,-synuclein aggregates may trigger synaptic dysfunction and degeneration, we have analyzed alterations in synaptosomal proteins in early symptomatic ,-synuclein(A30P)-transgenic mice by two-dimensional differential gel electrophoresis. Moreover, we carried out microRNA expression profiling using microfluidic chips, as microRNA have recently been shown to regulate synaptic plasticity in rodents and to modulate polyglutamine-induced protein aggregation and neurodegeneration in flies. Differentially expressed proteins in ,-synuclein(A30P)-transgenic mice point to alterations in mitochondrial function, actin dynamics, iron transport, and vesicle exocytosis, thus partially resembling findings in PD patients. Oxygen consumption of isolated brain mitochondria, however, was not reduced in mutant mice. Levels of several microRNA (miR-10a, -10b, -212, -132, -495) were significantly altered. One of them (miR-132) has been reported to be highly inducible by growth factors and to be a key regulator of neurite outgrowth. Moreover, miR-132-recognition sequences were detected in the mRNA transcripts of two differentially expressed proteins. MicroRNA may thus represent novel biomarkers for neuronal malfunction and potential therapeutic targets for human neurodegenerative diseases. [source] S -Allyl- L -Cysteine Sulfoxide Inhibits Tumor Necrosis Factor-Alpha Induced Monocyte Adhesion and Intercellular Cell Adhesion Molecule-1 Expression in Human Umbilical Vein Endothelial CellsTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 3 2010Chai Hui Abstract Garlic and its water-soluble allyl sulfur-containing compound, S -Allyl- L -cysteine Sulfoxide (ACSO), have shown antioxidant and anti-inflammatory activities, inhibiting the development of atherosclerosis. However, little is known about the mechanism(s) underlying the therapeutic effect of ACSO in inhibiting the formation of atherosclerostic lesion. This study aimed to investigate whether ACSO could modulate tumor necrosis factor-alpha (TNF-,)-induced expression of intercellular cell adhesion molecule-1, monocyte adhesion and TNF-,-mediated signaling in human umbilical vein endothelial cells. While TNF-, promoted the intercellular cell adhesion molecule-1 mRNA transcription in a dose- and time-dependent manner, ACSO treatment significantly reduced the levels of TNF-,-induced intercellular cell adhesion molecule-1 mRNA transcripts (P < 0.01). Furthermore, ACSO dramatically inhibited TNF-, triggered adhesion of THP-1 monocytes to endothelial cells and porcine coronary artery rings. Moreover, ACSO mitigated TNF-, induced depolarization of mitochondrial membrane potential and overproduction of superoxide anion, associated with the inhibition of NOX4, a subunit of nicotinamide adenine dinucleotide phosphate-oxidase, mRNA transcription. In addition, ACSO also inhibited TNF-,-induced phosphorylation of JNK, ERK1/2 and I,B, but not p38. Apparently, ACSO inhibited proinflammatory cytokine-induced adhesion of monocytes to endothelial cells by inhibiting the mitogen-activated protein kinase signaling and related intercellular cell adhesion molecule-1 expression, maintaining mitochondrial membrane potential, and suppressing the overproduction of superoxide anion in endothelial cells. Therefore, our findings may provide new insights into ACSO on controlling TNF-,-mediated inflammation and vascular disease. Anat Rec, 2010. © 2010 Wiley-Liss, Inc. [source] Expression of Messenger Ribonucleic Acid Encoding for Phosphodiesterase Isoenzymes in Human Female Genital TissuesTHE JOURNAL OF SEXUAL MEDICINE, Issue 6 2007Stefan Uckert PhD ABSTRACT Objectives., The use of inhibitors of phosphodiesterase 5 (PDE5) has been suggested to treat symptoms of female sexual dysfunction (FSD). Nonetheless, there has been a relatively low success rate of PDE5 inhibitors in FSD in comparison with male erectile dysfunction. The elevated expression of PDE5 in the human penile erectile tissue is considered the reason for the high clinical efficacy of PDE5 inhibitors in the pharmacotherapy of male erectile dysfunction. Aim., To evaluate by means of molecular biology the expression of messenger ribonucleic acid expression (mRNA) encoding for cyclic AMP and cyclic GMP PDE isoenzymes in female genital tissues. Main Outcome Measures., The amount of mRNA transcripts specifically encoding for cyclic AMP- and/or cyclic GMP-degrading PDE isoenzymes was determined. Methods., Human clitoral, labial, and vaginal tissue was obtained from four female cadavers (age at death: 18,42 years). The expression of mRNA specifically encoding for PDE1A, 1B, 1C, 2A, 4A, 5A, 10A, and 11A was elucidated by means of real-time polymerase chain reaction (PCR) analysis (TaqMan). Human penile erectile tissue (corpus cavernosum [HCC]) was used as a reference tissue. Results., mRNA encoding for all PDE isoforms mentioned above is expressed in the female genital tissues. Different magnitudes of mRNA expression were observed: a predominant expression of mRNA encoding for PDE1A but only insignificant amounts of PDE1B, 1C, 4A, 10, and 11A mRNA were registered. With PDE1A being the only exception, the mRNA expression was always higher in the HCC than in the female genital tissues. Especially, the expression of mRNA encoding for PDE5 was several-fold higher in the HCC. Conclusion., On the mRNA level, various PDE isoforms are expressed in the clitoris, labia, and vagina. It remains to be established as to whether the low expression of PDE5 in female genital tissue might be a negative predictor for the success of PDE5 inhibitors in the treatment of FSD. Uckert S, Ellinghaus P, Albrecht K, Jonas U, and Oelke M. Expression of messenger ribonucleic acid encoding for phosphodiesterase isoenzymes in human female genital tissues. J Sex Med 2007;4:1604,1609. [source] The effects of CpG-C oligodeoxynucleotides on innate immune responses in Eriocheir sinensis (H. Milne-Edwards, 1853)AQUACULTURE RESEARCH, Issue 10 2010Ying Zhang Abstract CpG oligodeoxynucleotides (ODNs) can stimulate the immune system, and therefore are widely used as a therapeutic vaccination and immune adjuvant in human. In the present study, CpG-C, a combination of A- and B-class ODN, was injected into Chinese mitten crab Eriocheir sinensis at three doses (0.1, 1 and 10 ,g crab,1), and the reactive oxygen species (ROS) levels, activities of total intracellular phenoloxidase (PO) and lysozyme-like activities, the mRNA transcripts of EsproPO, EsCrustin and EsALF were assayed to evaluate its modulating effects on the immune system of crab. The ROS levels in all treated and control groups were significantly increased from 6 to 24 h, except that ROS in 0.1 ,g CpG-C-treated crabs was comparable to that of the blank at 6 h. The PO activity was significantly enhanced and EsproPO transcripts were down-regulated (P<0.01) at 6 h after the injection of 0.1 ,g CpG-C, with no significant changes in the other dosage treatments. The lysozyme-like activities and EsCrustin transcripts in the CpG-C-treatment groups were significantly higher than those of controls. The mRNA expression of EsALF remained almost constant in all the groups during the treatment. These results collectively suggested that CpG-C could activate the immune responses of E. sinensis, and might be used as a novel immunostimulant for disease control in crabs. [source] Analysis of genetic control elements in eukaryotes: Transcriptional activity or nuclear hitchhiking?BIOESSAYS, Issue 12 2001Muriel Zohar A common way to analyse basal and stimulated activity of eukaryotic genetic control elements, such as promoters and enhancers, is to introduce them into cells via DNA vectors containing an easily assayable reporter gene. Activity is then studied by measurement of transiently produced mRNA or reporter protein. In such assays, it is assumed that the variable measured is proportional to the transcriptional activity of the control element under investigation. Here we question the validity of this generally accepted assumption. Specifically, recent observations indicate that control elements, in addition to modulating transgene transcription, can facilitate the nuclear uptake of their carrier plasmids. This process is mediated by transcription factors or other nuclear proteins harbouring nuclear localisation signals, which bind to the control elements in the cytoplasm and transport the DNA into the nucleus through the protein nuclear import machinery. As the number of mRNA transcripts produced for an epi-chromosomally expressed transgene is directly related to its copy number inside the nucleus, such transport activity may lead to substantial overestimation of the transcriptional potency of the control element(s) studied. BioEssays 23:1176,1179, 2001. © 2001 John Wiley & Sons, Inc. [source] Crystallization and preliminary crystallographic analysis of the second RRM of Pub1 from Saccharomyces cerevisiaeACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 2 2009Yingji Cui mRNA stability is elaborately regulated by elements in the mRNA transcripts and their cognate RNA-binding proteins, which play important roles in regulating gene expression at the post-transcriptional level in eukaryotes. Poly(U)-binding protein 1 (Pub1), which is a major nuclear and cytoplasmic polyadenylated RNA-binding protein in Saccharomyces cerevisiae, is involved in the regulation of mRNA turnover as a trans -acting factor. It binds to transcripts containing the AU-rich element in order to protect them from degradation. Pub1 contains three RNA-recognition motifs (RRMs) which play significant roles in mRNA binding at AU-rich elements and stabilizer elements. In this study, the second RRM of Pub1 was crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 4000 as a precipitant at 283,K. An X-ray diffraction data set was collected using a single flash-cooled crystal that belonged to space group H3. [source] Hepatic transcription response to high-fat treatment in mice: Microarray comparison of individual vs. pooled RNA samplesBIOTECHNOLOGY JOURNAL, Issue 9 2010Gyeong-Min Do Abstract Microarray analysis is an important tool in studying gene expression profiles in genomic research. Despite many concerns raised, mRNA samples are often pooled in microarray experiments to reduce the cost and complexity of analysis of transcript profiling. This study reports the results of microarray experiments designed to compare effects of pooling RNA samples and its impact on identifying profiles of mRNA transcripts and differentially expressed genes (DEGs) in the liver of C57BL/6J mice fed normal and high-fat diet. Pearson's correlation coefficient of transcripts between pooled and non-pooled RNA samples was 0.98 to 1.0. The impact of pooled vs. non-pooled RNA samples was also compared by number of transcripts or DEGs. Agreement of significant genes between pooled and non-pooled sets was fairly desirable based on t -test <0.05 and/or signal intensity ,2-fold. Biological process profile and the correlation coefficiency of fold change in the hepatic gene transcripts between pooled and non-pooled samples were also higher than 0.97. This suggests that pooling hepatic RNA samples can reflect the expression pattern of individual samples, and that properly constructed pools can provide nearly identical measures of transcription response to individual RNA sample. [source] |