mRNA Induction (mrna + induction)

Distribution by Scientific Domains


Selected Abstracts


,3-Tubulin is induced by estradiol in human breast carcinoma cells through an estrogen-receptor dependent pathway

CYTOSKELETON, Issue 7 2009
Jennifer Saussede-Aim
Abstract Microtubules are involved in a variety of essential cell functions. Their role during mitosis has made them a target for anti-cancer drugs. However development of resistance has limited their use. It has been established that enhanced ,3-tubulin expression is correlated with reduced response to antimicrotubule agent-based chemotherapy or worse outcome in a variety of tumor settings. However little is known regarding the regulation of ,3-tubulin expression. We investigated the regulatory mechanisms of expression of ,3-tubulin in the MCF-7 cell line, a model of hormone-dependent breast cancer. Exposure of MCF-7 cells to estradiol was found to induce ,3-tubulin mRNA as well as ,3-tubulin protein expression. Conversely, we did not observe induction of ,3-tubulin mRNA by estradiol in MDA-MB-231 cells which are negative for the estrogen receptor (ER). In order to determine whether ,3-tubulin up-regulation is mediated through the ER pathway, MCF-7 cells were exposed to two ER modulators. Exposure to tamoxifen, a selective estrogen receptor modulator, completely abolished the ,3-tubulin mRNA induction due to estradiol in MCF-7 cells. This result was confirmed with fulvestrant, a pure antagonist of ER. These results demonstrate that the effect of estradiol on ,3-tubulin transcription is mediated through an ER dependent pathway. Cell Motil. Cytoskeleton 66:378,388, 2009. © 2009 Wiley-Liss, Inc. [source]


Epigenetic control of translation regulation: Alterations in histone H3 lysine 9 post-translation modifications are correlated with the expression of the translation initiation factor 2B (Eif2b5) during thermal control establishment

DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2010
Tatiana Kisliouk
Abstract Thermal control set point is regulated by thermosensitive neurons of the preoptic anterior hypothalamus (PO/AH) and completes its development during postnatal critical sensory period. External stimuli, like increase in environmental temperature, influence the neuronal protein repertoire and, ultimately, cell properties via activation or silencing of gene transcription, both of which are regulated by the "histone code."" Here, we demonstrated an increase in global histone H3 lysine 9 (H3K9) acetylation as well as H3K9 dimethylation in chick PO/AH during heat conditioning at the critical period of sensory development. In contrast to the global profile of H3K9 modifications, acetylation and dimethylation patterns of H3K9 at the promoter of the catalytic subunit of eukaryotic translation initiation factor 2B (Eif2b5) were opposite to each other. During heat conditioning, there was an increase in H3K9 acetylation at the Eif2b5 promoter, simultaneously with decrease in H3K9 dimethylation. These alterations coincided with Eif2b5 mRNA induction. Moreover, exposure to excessive heat during the critical period resulted in long-term effect on both H3K9 tagging at the Eif2b5 promoter and Eif2b5 mRNA expression. These data suggest a role for dynamic H3K9 post-translational modifications in global translation regulation during the thermal control establishment. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2010 [source]


Molecular cloning of cytochrome P4501A cDNA of medaka (Oryzias latipes) and messenger ribonucleic acid regulation by environmental pollutants

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2004
Jisung Ryu
Abstract The sequence of cytochrome P4501A (CYP1A) cDNA of medaka (Oryzias latipes) was determined, and its messenger ribonucleic acid (mRNA) regulation by ,-naphthoflavone (,NF) was evaluated. The determined cDNA sequence contained 2,349 base pairs (bp), and the open reading frame contained a total of 1,563 bp encoding 521 predicted amino acids. The induction of CYP1A mRNA in medaka was evaluated using reverse transcription,polymerase chain reaction. The concentration,dependent induction of CYP1A mRNA in the liver was observed after exposure to ,NF at nominal concentrations of 20, 100, and 500 ,g/ L for 2 d. Time-dependent changes of CYP1A mRNA levels were also observed in the liver, gill, gut, and caudal fin tissues of medaka exposed to 100 ,g/L of ,NF for 7 d. Our results showed that the degree of CYP1A mRNA induction in the gill, gut, and caudal fin after exposure to ,NF was relatively higher than that in the liver, possibly because of low basal levels of CYP1A mRNA in the gill, gut, and caudal fin of nonexposed fish. The induction of medaka CYP1A mRNA was also observed after exposure to an environmental sample, landfill leachate. The CYP1A mRNA inductions in the gill, gut, and caudal fin were also higher than that in the liver as shown in the ,NF-treated groups. These results show that CYP1A mRNA determination in the gill, gut, and caudal fin, which are in direct contact with the polluted water, may become a useful method for monitoring CYP1A-inducible chemicals. [source]


The presence of morphologically intermediate papilla syndrome in United Kingdom populations of sand goby (Pomatoschistus spp.): Endocrine disruption?

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2003
Mark F. Kirby
Abstract The sand goby (Pomatoschistus spp.) is a small estuarine fish. Its abundance, life history, and sedentary nature lead to its adoption as a key species in the U.K. Endocrine Disruption in the Marine Environment (EDMAR) Program. This study investigated the presence of classic markers of estrogenic exposure by determining vitellogenin (VTG) and zona radiata protein (ZRP) mRNA levels and ovotestis in estuarine-caught male gobies and investigated morphological changes in the urogenital papilla (UGP). Laboratory exposures to estrogens were also conducted to ascertain the responses of these markers. Wild-caught male fish showed no evidence of ovotestis, VTG, or ZRP mRNA induction. Laboratory exposures suggested that sensitivity of the goby to VTG/ZRP mRNA induction was similar to flounder. The UGP inspection of wild-caught specimens revealed evidence of feminization of male papillae, a condition denoted as morphologically intermediate papilla syndrome (MIPS). Morphologically intermediate papilla syndrome was more prevalent at estrogenically contaminated sites. Juvenile goby experimentally exposed to 17,-estradiol for 11 to 32 weeks exhibited signs of the MIPS condition, showing that it was inducible by estrogenic exposure and could therefore be a form of estrogenic endocrine disruption. The estuaries where the MIPS condition was most prevalent (>50% at certain sites) were the Tees, Mersey, and Clyde. The potential of the MIPS condition to significantly interfere with reproductive performance is discussed as well as its use as a monitoring tool for endocrine disruption in the estuarine environment. [source]


FGF-2, IL-1, and TGF-, regulate fibroblast expression of S100A8

FEBS JOURNAL, Issue 11 2005
Farid Rahimi
Growth factors, including fibroblast growth factor-2 (FGF-2) and transforming growth factor-, (TGF-,) regulate fibroblast function, differentiation and proliferation. S100A8 and S100A9 are members of the S100 family of Ca2+ -binding proteins and are now accepted as markers of inflammation. They are expressed by keratinocytes and inflammatory cells in human/murine wounds and by appropriately activated macrophages, endothelial cells, epithelial cells and keratinocytes in vitro. In this study, regulation and expression of S100A8 and S100A9 were examined in fibroblasts. Endotoxin (LPS), interferon , (IFN,), tumour-necrosis factor (TNF) and TGF-, did not induce the S100A8 gene in murine fibroblasts whereas FGF-2 induced mRNA maximally after 12 h. The FGF-2 response was strongly enhanced and prolonged by heparin. Interleukin-1, (IL-1,) alone, or in synergy with FGF-2/heparin strongly induced the gene in 3T3 fibroblasts. S100A9 mRNA was not induced under any condition. Induction of S100A8 in the absence of S100A9 was confirmed in primary fibroblasts. S100A8 mRNA induction by FGF-2 and IL-1, was partially dependent on the mitogen-activated-protein-kinase pathway and dependent on new protein synthesis. FGF-2-responsive elements were distinct from the IL-1,-responsive elements in the S100A8 gene promoter. FGF-2-/heparin-induced, but not IL-1,-induced responses were significantly suppressed by TGF-,, possibly mediated by decreased mRNA stability. S100A8 in activated fibroblasts was mainly intracytoplasmic. Rat dermal wounds contained numerous S100A8-positive fibroblast-like cells 2 and 4 days post injury; numbers declined by 7 days. Up-regulation of S100A8 by FGF-2/IL-1,, down-regulation by TGF-,, and its time-dependent expression in wound fibroblasts suggest a role in fibroblast differentiation at sites of inflammation and repair. [source]


Dysregulation of the BMP-p38 MAPK Signaling Pathway in Cells From Patients With Fibrodysplasia Ossificans Progressiva (FOP),,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2006
Jennifer L Fiori
Abstract FOP is a disabling disorder in which skeletal muscle is progressively replaced with bone. Lymphocytes, our model system for examining BMP signaling, cannot signal through the canonical Smad pathway unless exogenous Smad1 is supplied, providing a unique cell type in which the BMP,p38 MAPK pathway can be examined. FOP lymphocytes exhibit defects in the BMP,p38 MAPK pathway, suggesting that altered BMP signaling underlies ectopic bone formation in this disease. Introduction: Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder characterized by progressive heterotopic ossification of connective tissues. Whereas the primary genetic defect in this condition is unknown, BMP4 mRNA and protein and BMP receptor type IA (BMPRIA) protein are overexpressed in cultured lymphocytes from FOP patients, supporting that altered BMP signaling is involved in this disease. In this study, we examined downstream signaling targets to study the BMP,Smad and BMP,p38 mitogen-activated protein kinase (MAPK) pathways in FOP. Materials and Methods: Protein phosphorylation was assayed by immunoblots, and p38 MAPK activity was measured by kinase assays. To examine BMP target genes, the mRNA expression of ID1, ID3, and MSX2 was determined by quantitative real-time PCR. Statistical analysis was performed using Student's t -test or ANOVA. Results: FOP lymphocytes exhibited increased levels of p38 phosphorylation and p38 MAPK activity in response to BMP4 stimulation. Furthermore, in response to BMP4, FOP cells overexpressed the downstream signaling targets ID1 by 5-fold and ID3 by 3-fold compared with controls. ID1 and ID3 mRNA induction was specifically blocked with a p38 MAPK inhibitor, but not extracellular signal-related kinase (ERK) or c-Jun N-terminal kinase (JNK) inhibitors. MSX2, a known Smad pathway target gene, is not upregulated in control or FOP cells in response to BMP, suggesting that lymphocytes do not use this limb of the BMP pathway. However, introduction of Smad1 into lymphocytes made the cells competent to regulate MSX2 mRNA after BMP4 treatment. Conclusions: Lymphocytes are a cell system that signals primarily through the BMP,p38 MAPK pathway rather than the BMP,Smad pathway in response to BMP4. The p38 MAPK pathway is dysregulated in FOP lymphocytes, which may play a role in the pathogenesis of FOP. [source]


Induction of collagenase-2 (matrix metalloproteinase-8) gene expression by interleukin-1, in human gingival fibroblasts

JOURNAL OF PERIODONTAL RESEARCH, Issue 3 2001
M. Abe
Collagenase-2 (matrix metalloproteinase-8 or MMP-8) is synthesized mainly by polymorphonuclear neutrophils and plays a crucial role in inflammatory periodontal tissue destruction. We tested the effect of interleukin(IL)-1,, a proinflammatory cytokine, on collagenase-2 gene expression in cultured human gingival fibroblasts and also compared this effect with IL-1,-induced changes in collagenase-1 and -3 gene expression. By a combination of reverse transcription-polymerase chain reaction and Southern analysis, IL-1, was found to dose-dependently induce gene expression for collagenase-1, -2, and -3 in gingival fibroblasts. Although collagenase-2 mRNA was the least abundant among the three collagenase mRNAs tested in the cultured fibroblast system, addition of 1 ng/ml IL-1, significantly increased collagenase-2 gene transcription within 6 h, and maximal stimulation was maintained for 12 to 48 h. Significant mRNA induction was observed with as little as 0.1 ng/ml IL-1,. IL-1, was also found to increase the stability of collagenase-2 mRNAs after transcription arrest was induced by an RNA polymerase inhibitor. Stimulation of collagenase-2 mRNA expression by IL-1, was prevented by pretreatment with cycloheximide, an inhibitor of protein synthesis. These results indicate that IL-1, increased mRNA expression for collagenases including collagenase-2 in gingival fibroblasts. The findings also suggest that enhancement of collagenase-2 mRNA expression by IL-1, involves both protein synthesis and suppression of mRNA degradation. [source]


Biomarkers of inflammation in cattle determining the effectiveness of anti-inflammatory drugs

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 1 2010
M. J. MYERS
Myers, M. J., Scott, M. L., Deaver, C. M., Farrell, D. E., Yancy, H. F. Biomarkers of inflammation in cattle determining the effectiveness of anti-inflammatory drugs. J. vet. Pharmacol. Therap.33, 1,8. The impact of nonsteroidal anti-inflammatory drugs (NSAID) on prostaglandin E2 (PGE2) production and cyclooxygenase 2 (COX-2) mRNA expression in bovine whole blood (WB) cultures stimulated by lipopolysaccharide (LPS) was determined, using the blood from six Holstein dairy cattle in various stages of lactation. Peak production of PGE2 occurred 24 h after LPS stimulation but did not result in detectable concentrations of thromboxane B2 (TXB2). The NSAID indomethacin, aspirin, flunixin meglumine, and 4-[5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-yl] benzene sulfonamide (PTPBS; celecoxib analogue), along with dexamethasone, were all equally effective in reducing the concentration of PGE2 in the bovine WB culture supernatants. Bradykinin exhibited peak supernatant concentrations 1 h after LPS stimulation. Dexamethasone and the NSAID used in this study were equally effective at inhibiting bradykinin production. Peak induction of COX-2 mRNA occurred 3 h post-LPS stimulation. However, neither dexamethasone nor any of the NSAID used in this study altered COX-2 mRNA concentrations. In contrast, aspirin, flunixin meglumine, and PTPBS reduced tumor necrosis factor-alpha (TNF,) mRNA concentration. These results demonstrate that bovine blood cells respond to NSAID therapy like other mammalian cells with respect to inhibition of PGE2 production and suppression of TNF mRNA induction, but do not inhibit induction of COX-2 mRNA. [source]


Respiratory virus induction of alpha-, beta- and lambda-interferons in bronchial epithelial cells and peripheral blood mononuclear cells

ALLERGY, Issue 3 2009
M. R. Khaitov
Background:, Respiratory viruses, predominantly rhinoviruses are the major cause of asthma exacerbations. Impaired production of interferon-, in rhinovirus infected bronchial epithelial cells (BECs) and of the newly discovered interferon-,s in both BECs and bronchoalveolar lavage cells, is implicated in asthma exacerbation pathogenesis. Thus replacement of deficient interferon is a candidate new therapy for asthma exacerbations. Rhinoviruses and other respiratory viruses infect both BECs and macrophages, but their relative capacities for ,-, ,- and ,-interferon production are unknown. Methods:, To provide guidance regarding which interferon type is the best candidate for development for treatment/prevention of asthma exacerbations we investigated respiratory virus induction of ,-, ,- and ,-interferons in BECs and peripheral blood mononuclear cells (PBMCs) by reverse transferase-polymerase chain reaction and enzyme-linked immunosorbent assay. Results:, Rhinovirus infection of BEAS-2B BECs induced interferon-, mRNA expression transiently at 8 h and interferon-, later at 24 h while induction of interferon-, was strongly induced at both time points. At 24 h, interferon-, protein was not detected, interferon-, was weakly induced while interferon-, was strongly induced. Similar patterns of mRNA induction were observed in primary BECs, in response to both rhinovirus and influenza A virus infection, though protein levels were below assay detection limits. In PBMCs interferon-,, interferon-, and interferon-, mRNAs were all strongly induced by rhinovirus at both 8 and 24 h and proteins were induced: interferon-,>-,>-,. Thus respiratory viruses induced expression of ,-, ,- and ,-interferons in BECs and PBMCs. In PBMCs interferon-,>-,>-, while in BECs, interferon-,>-,>-,. Conclusions:, We conclude that interferon-,s are likely the principal interferons produced during innate responses to respiratory viruses in BECs and interferon-,s in PBMCs, while interferon-, is produced by both cell types. [source]


PKC-mediated secretion of death factors in LNCaP prostate cancer cells is regulated by androgens

MOLECULAR CARCINOGENESIS, Issue 3 2009
Liqing Xiao
Abstract Activation of PKC, in androgen-dependent LNCaP prostate cancer cells leads to apoptosis via the activation of p38 MAPK and JNK cascades. We have recently shown that treatment of LNCaP cells with phorbol 12-myristate 13-acetate (PMA) leads to a PKC,-mediated autocrine release of death factors, including the cytokines TNF, and TRAIL, and that conditioned medium (CM) collected from PMA-treated LNCaP cells promotes the activation of the extrinsic apoptotic cascade. Interfering with this autocrine loop either at the level of factor release or death receptor activation/signaling markedly impaired the PMA apoptotic response. In the present study we show that this PKC,-dependent autocrine mechanism is greatly influenced by androgens. Indeed, upon androgen depletion, which down-regulates PKC, expression, TNF, and TRAIL mRNA induction and release by PMA are significantly diminished, resulting in a reduced apoptogenic activity of the CM and an impaired ability of the CM to activate p38 MAPK and JNK. These effects can be rescued by addition of the synthetic androgen R1881. Furthermore, RNAi depletion of the androgen-receptor (AR) from LNCaP cells equally impaired PMA responses, suggesting that PKC-mediated induction of death factor secretion and apoptosis in LNCaP prostate cancer cells are highly sensitive to hormonal control. © 2008 Wiley-Liss, Inc. [source]


The chemopreventive compound curcumin is an efficient inhibitor of Epstein-Barr virus BZLF1 transcription in Raji DR-LUC cells,

MOLECULAR CARCINOGENESIS, Issue 3 2002
Manfred Hergenhahn
Abstract To characterize the effects of inhibitors of Epstein-Barr virus (EBV) reactivation, we established Raji DR-LUC cells as a new test system. These cells contain the firefly luciferase (LUC) gene under the control of an immediate-early gene promoter (duplicated right region [DR]) of EBV on a self-replicating episome. Luciferase induction thus serves as an intrinsic marker indicative for EBV reactivation from latency. The tumor promoter 12- O -tetradecanoylphorbol-13-acetate (TPA) induced the viral key activator BamH fragment Z left frame 1 (BZLF1) protein ("ZEBRA") in this system, as demonstrated by induction of the BZLF1 protein-responsive DR promoter upstream of the luciferase gene. Conversely, both BZLF1 protein and luciferase induction were inhibited effectively by the chemopreventive agent curcumin. Semiquantitative reverse transcriptase (RT)-polymerase chain reaction (PCR) further demonstrated that the EBV inducers TPA, sodium butyrate, and transforming growth factor-, (TGF-,) increased levels of the mRNA of BZLF1 mRNA at 12, 24, and 48 h after treatment in these cells. TPA treatment also induced luciferase mRNA with similar kinetics. Curcumin was found to be highly effective in decreasing TPA-, butyrate-, and TGF-,-induced levels of BZLF1 mRNA, and of TPA-induced luciferase mRNA, indicating that three major pathways of EBV are inhibited by curcumin. Electrophoretic mobility shift assays (EMSA) showed that activator protein 1 (AP-1) binding to a cognate AP-1 sequence was detected at 6 h and could be blocked by curcumin. Protein binding to the complete BZLF1 promoter ZIII site (ZIIIA+ZIIIB) demonstrated several specific complexes that gave weak signals at 6 h and 12 h but strong signals at 24 h, all of which were reduced after application of curcumin. Autostimulation of BZLF1 mRNA induction through binding to the ZIII site at 24 h was confirmed by antibody-induced supershift analysis. The present results confirm our previous finding that curcumin is an effective agent for inhibition of EBV reactivation in Raji DR-CAT cells (carrying DR-dependent chloramphenicol acetyltransferase), and they show for the first time that curcumin inhibits EBV reactivation mainly through inhibition of BZLF1 gene transcription. © 2002 Wiley-Liss, Inc. [source]


Gene expression profiles of TNF-,, TACE, furin, IL-1, and matrilysin in UVA- and UVB-irradiated HaCat cells

PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 4 2005
Beata Skiba
Background/Purpose: It is known that solar ultraviolet (UV) irradiation exerts multiple effects on mammalian skin tissues, one of which is the induction of local and systemic immunosuppression as well as inflammation. Tumor necrosis factor-, (TNF-,) and other cytokines are suggested to play a role in these responses. Quantitative real-time polymerase chain reaction (TaqMan RTPCR) was used to elucidate the effect of UVA and UVB irradiation on the expression of genes coding for TNF-,, IL-1,, IL-10, FasL, matrilysin, TACE and furin in HaCaT cells over a 48 h period (IL-1,, interleukin-1,; FasL, Fas ligand). Methods: Cultured HaCaT cells were either sham irradiated (control) or exposed to UVA (2000 and 8000 J/m2) or UVB (200 and 2000 J/m2) radiation. RNA was extracted from cells at 0, 4, 8, 12, 16, 24, 48 h post-irradiation and reverse transcribed to generate cDNA for subsequent real-time PCR amplification. Results: Significant increases in the mRNA levels for all genes tested were detected in both UVA- and UVB-irradiated HaCaT cells compared with control (sham-irradiated) cells. TNF-, mRNA levels were immediately up-regulated (0 h) after irradiation, with maximal induction at 8 h post 2000 J/m2 UVA and 200 J/m2 UVB irradiation, at 4 h post 8000 J UVA irradiation and at 48 h post 2000 J/m2 UVB irradiation. No correlation was observed between TNF-,, TACE and furin mRNA induction in the different irradiated cohorts. Conclusion: Results suggest that time-distinct gene induction of TNF-,, furin, IL-1, and matrilysin may be involved in UV-induced cellular responses, but not for TACE. In general, mRNA induction was dose dependent at some time points post-irradiation, but not throughout the whole time course tested. Our results show that quantitative real-time PCR is a useful tool in the analysis of quantitative changes of mRNA levels in cultured HaCaT cells after UV exposure. [source]