mRNA Expression Analysis (mrna + expression_analysis)

Distribution by Scientific Domains


Selected Abstracts


Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group

ENVIRONMENTAL MICROBIOLOGY, Issue 2 2010
Anke Meyerdierks
Summary Microbial consortia mediating the anaerobic oxidation of methane with sulfate are composed of methanotrophic Archaea (ANME) and Bacteria related to sulfate-reducing Deltaproteobacteria. Cultured representatives are not available for any of the three ANME clades. Therefore, a metagenomic approach was applied to assess the genetic potential of ANME-1 archaea. In total, 3.4 Mbp sequence information was generated based on metagenomic fosmid libraries constructed directly from a methanotrophic microbial mat in the Black Sea. These sequence data represent, in 30 contigs, about 82,90% of a composite ANME-1 genome. The dataset supports the hypothesis of a reversal of the methanogenesis pathway. Indications for an assimilatory, but not for a dissimilatory sulfate reduction pathway in ANME-1, were found. Draft genome and expression analyses are consistent with acetate and formate as putative electron shuttles. Moreover, the dataset points towards downstream electron-accepting redox components different from the ones known from methanogenic archaea. Whereas catalytic subunits of [NiFe]-hydrogenases are lacking in the dataset, genes for an [FeFe]-hydrogenase homologue were identified, not yet described to be present in methanogenic archaea. Clustered genes annotated as secreted multiheme c -type cytochromes were identified, which have not yet been correlated with methanogenesis-related steps. The genes were shown to be expressed, suggesting direct electron transfer as an additional possible mode to shuttle electrons from ANME-1 to the bacterial sulfate-reducing partner. [source]


Recurrent copy number gain of transcription factor SOX2 and corresponding high protein expression in oral squamous cell carcinoma

GENES, CHROMOSOMES AND CANCER, Issue 1 2010
Kolja Freier
Gene copy number aberrations are involved in oral squamous cell carcinoma (OSCC) development. To delineate candidate genes inside critical chromosomal regions, array-CGH was applied to 40 OSCC specimens using a microarray covering the whole human genome with an average resolution of 1 Mb. Gene copy number gains were predominantly found at 1q23 (9 cases), 3q26 (11), 5p15 (13), 7p11 (7), 8q24 (17), 11q13 (15), 14q32 (8), 19p13 (8), 19q12 (7), 19q13 (8), and 20q13 (9), whereas gene copy number losses were detected at 3p21-3p12 (15), 8p32 (11), 10p12 (8), and 18q21-q23 (10). Subsequent mRNA expression analyses by quantitative real time polymerase chain reaction found high mRNA expression of candidate genes SOX2 in 3q26.33, FSLT3 in 19p13.3, and CCNE1 in 19q12. Tissue microarray (TMA) analyses in a representative OSCC collection found gene copy number gain for SOX2 in 52% (115/223) and for CCNE1 in 31% (72/233) of the tumors. Immunohistochemical analyses on TMA sections of the corresponding proteins detected high expression of SOX2 in 18.1% (49/271) and of CyclinE1 in 23.3% (64/275) of tumors analyzed. These findings indicate that SOX2 and CCNE1 might be activated via gene copy number gain and participate in oral carcinogenesis. The combination of array-CGH with TMA analyses allows rapid pinpointing of novel promising candidate genes, which might be used as therapeutic stratification markers or target molecules for therapeutic interference. © 2009 Wiley-Liss, Inc. [source]


Increased Expression of the Neuronal Glutamate Transporter (EAAT3/EAAC1) in Hippocampal and Neocortical Epilepsy

EPILEPSIA, Issue 3 2002
Peter B. Crino
Summary: ,Purpose: To define the changes in gene and protein expression of the neuronal glutamate transporter (EAAT3/EAAC1) in a rat model of temporal lobe epilepsy as well as in human hippocampal and neocortical epilepsy. Methods: The expression of EAAT3/EAAC1 mRNA was measured by reverse Northern blotting in single dissociated hippocampal dentate granule cells from rats with pilocarpine-induced temporal lobe epilepsy (TLE) and age-matched controls, in dentate granule cells from hippocampal surgical specimens from patients with TLE, and in dysplastic neurons microdissected from human focal cortical dysplasia specimens. Immunolabeling of rat and human hippocampi and cortical dysplasia tissue with EAAT3/EAAC1 antibodies served to corroborate the mRNA expression analysis. Results: The expression of EAAT3/EAAC1 mRNA was increased by nearly threefold in dentate granule cells from rats with spontaneous seizures compared with dentate granule cells from control rats. EAAT3/EAAC1 mRNA levels also were high in human dentate granule cells from patients with TLE and were significantly elevated in dysplastic neurons in cortical dysplasia compared with nondysplastic neurons from postmortem control tissue. No difference in expression of another glutamate transporter, EAAT2/GLT-1, was observed. Immunolabeling demonstrated that EAAT3/EAAC1 protein expression was enhanced in dentate granule cells from both rats and humans with TLE as well as in dysplastic neurons from human cortical dysplasia tissue. Conclusions: Elevations of EAAT3/EAAC1 mRNA and protein levels are present in neurons from hippocampus and neocortex in both rats and humans with epilepsy. Upregulation of EAAT3/EAAC1 in hippocampal and neocortical epilepsy may be an important modulator of extracellular glutamate concentrations and may occur as a response to recurrent seizures in these cell types. [source]


Recurrent coamplification of cytoskeleton-associated genes EMS1 and SHANK2 with CCND1 in oral squamous cell carcinoma

GENES, CHROMOSOMES AND CANCER, Issue 2 2006
Kolja Freier
Chromosomal band 11q13 is frequently amplified in oral squamous cell carcinoma (OSCC) and assumed to be critically involved in tumor initiation and progression by proto-oncogene activation. Though cyclin D1 (CCND1) is supposed to be the most relevant oncogene, several additional putative candidate genes are inside this chromosomal region, for which their actual role in tumorigenesis still needs to be elucidated. To characterize the 11q13 amplicon in detail, 40 OSCCs were analyzed by comparative genomic hybridization to DNA microarrays (matrix-CGH) containing BAC clones derived from chromosomal band 11q13. This high-resolution approach revealed a consistent amplicon about 1.7 Mb in size including the CCND1 oncogene. Seven BAC clones covering FGF3, EMS1, and SHANK2 were shown to be frequently coamplified inside the CCND1 amplicon. Subsequent analysis of tissue microarrays by FISH revealed amplification frequencies of 36.8% (88/239) for CCND1, 34.3% (60/175) for FGF3, 37.4% (68/182) for EMS1, and 36.3% (61/168) for SHANK2. Finally, quantitative mRNA expression analysis demonstrated consistent overexpression of CCND1 in all tumors and of EMS1 and SHANK2 in a subset of specimens with 11q13 amplification, but no expression of FGF3 in any of the cases. Our study underlines the critical role of CCND1 in OSCC development and additionally points to the functionally related genes EMS1 and SHANK2, both encoding for cytoskeleton-associated proteins, which are frequently coamplified with CCND1 and therefore could cooperatively contribute to OSCC pathogenesis. © 2005 Wiley-Liss, Inc. [source]


A critical appraisal of prognostic and predictive factors for common lung cancers

HISTOPATHOLOGY, Issue 7 2006
F B J M Thunnissen
The outlook for patients with lung cancer remains poor despite advances in the understanding of the pathology and biology of this disease. To optimize treatment protocols prognostic data are essential. The current era with molecular research on mRNA expression analysis and proteomics will lead to a plethora of new molecular markers, which are likely to be correlated, at least in part, with each other and with disease activity, progression and survival. However, although the number of prognostic factors analysed in published systematic reviews on lung cancer is large, the scope of these factors in individual studies is often narrow. In daily practice prognostic factors other than general TNM staging are not implemented. To assess the efficacy of new prognostic factors for the management of individual patients with non-small cell lung cancer, studies with clinically relevant modelling are required. In this review arguments are provided to use a model combining radiological and histopathological growth rate, histopathological diagnosis and molecular characteristics as markers for metastatic capacity, tumour volume doubling time and expected response to targeted therapy. This may reveal time-related predictive information useful for treatment guidance of the individual patient. [source]


Mutations of the Wnt antagonist AXIN2 (Conductin) result in TCF-dependent transcription in medulloblastomas

INTERNATIONAL JOURNAL OF CANCER, Issue 2 2007
Arend Koch
Abstract Medulloblastomas (MBs) represent the most common malignant brain tumors in children. Most MBs develop sporadically in the cerebellum, but their incidence is highly elevated in patients with familial adenomatous polyposis coli. These patients carry germline mutations in the APC tumor suppressor gene. APC is part of a multiprotein complex involved in the Wnt signaling pathway that controls the stability of ,-catenin, the central effector in this cascade. Previous genetic studies in MBs have identified mutations in genes coding for ,-catenin and its partners, APC and AXIN1, which cause activation of Wnt signaling. The pathway is negatively controlled by the tumor suppressor AXIN2 (Conductin), a scaffold protein of this signaling complex. To investigate whether alterations in AXIN2 may also be involved in the pathogenesis of sporadic MBs, we performed a mutational screening of the AXIN2 gene in 116 MB biopsy samples and 11 MB cell lines using single-strand conformation polymorphism and sequencing analysis. One MB displayed a somatic, tumor-specific 2 bp insertion in exon 5, leading to carboxy-terminal truncation of the AXIN2 protein. This tumor biopsy showed nuclear accumulation of ,-catenin protein, indicating an activation of Wnt signaling. In 2 further MB biopsies, mutations were identified in exon 5 (Glu408Lys) and exon 8 (Ser738Phe) of the AXIN2 gene, which are due to predicted germline mutations and rare polymorphisms. mRNA expression analysis in 22 MBs revealed reduced expression of AXIN2 mRNA compared to 8 fetal cerebellar tissues. Promoter hypermethylation could be ruled out as a major cause for transcriptional silencing by bisulfite sequencing. To study the functional role of AXIN2 in MBs, wild-type AXIN2 was overexpressed in MB cell lines in which the Wnt signaling pathway was activated by Wnt-3a. In this assay, AXIN2 inhibited Wnt signaling demonstrated in luciferase reporter assays. In contrast, overexpression of mutated AXIN2 with a deleted C-terminal DIX-domain resulted in an activation of the Wnt signaling pathway. These findings indicate that mutations of AXIN2 can lead to an oncogenic activation of the Wnt pathway in MBs. © 2007 Wiley-Liss, Inc. [source]


The von Hippel-Lindau tumor suppressor gene expression level has prognostic value in neuroblastoma

INTERNATIONAL JOURNAL OF CANCER, Issue 3 2006
Jasmien Hoebeeck
Abstract Deletions of the short arm of chromosome 3 are often observed in a specific subset of aggressive neuroblastomas (NBs) with loss of distal 11q and without MYCN amplification. The critical deleted region encompasses the locus of the von Hippel-Lindau gene (VHL, 3p25). Constitutional loss of function mutations in the VHL gene are responsible for the VHL syndrome, a dominantly inherited familial cancer syndrome predisposing to a variety of neoplasms, including pheochromocytoma. Pheochromocytomas are, like NB, derived from neural crest cells, but, unlike NB, consist of more mature chromaffin cells instead of immature neuroblasts. Further arguments for a putative role of VHL in NB are its function as oxygen sensitizer and the reported relation between hypoxia and dedifferentiation of NB cells, leading to a more aggressive phenotype. To test the possible involvement of VHL in NB, we did mRNA expression analysis and sought evidence for VHL gene inactivation. Although no evidence for a classic tumor suppressor role for VHL in NB could be obtained, a strong correlation was observed between reduced levels of VHL mRNA and low patient survival probability (p = 0.013). Furthermore, VHL appears to have predictive power in NTRK1 (TRKA) positive tumor samples with presumed favorable prognosis, which makes it a potentially valuable marker for more accurate risk assessment in this subgroup of patients. The significance of the reduced VHL expression levels in relation to NB tumor biology remains unexplained, as functional analysis demonstrated no clear effect of the reduction in VHL mRNA expression on protein stability of its downstream target hypoxia-inducible factor ,. © 2006 Wiley-Liss, Inc. [source]


Secretome analysis of differentially induced proteins in rice suspension-cultured cells triggered by rice blast fungus and elicitor

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 5 2009
Sun Tae Kim
Abstract Secreted proteins were investigated in rice suspension-cultured cells treated with rice blast fungus Magnaporthe grisea and its elicitor using biochemical and 2-DE coupled with MS analyses followed by their in planta mRNA expression analysis. M. grisea and elicitor successfully interacted with suspension-cultured cells and prepared secreted proteins from these cultures were essentially intracellular proteins free. Comparative 2-D gel analyses identified 21 differential protein spots due to M. grisea and/or elicitor over control. MALDI-TOF-MS and ,LC-ESI-MS/MS analyses of these protein spots revealed that most of assigned proteins were involved in defense such as nine chitinases, two germin A/oxalate oxidases, five domain unknown function 26 (DUF 26) secretory proteins, and ,-expansin. One chitin binding chitinase protein was isolated using chitin binding beads and strong enzymatic activity was identified in an in-gel assay. Interestingly, their protein abundance correlated well at transcript levels in elicitor-treated cultures as judged by semi-quantitative RT-PCR. Each identified differentially expressed protein group was compared at transcript levels in rice leaves inoculated with incompatible (KJ401) and compatible (KJ301) races of M. grisea. Time-course profiling revealed their inductions were stronger and earlier in incompatible than compatible interactions. Identified secreted proteins and their expression correlation at transcript level in suspension-cultured cells and also in planta suggest that suspension-cultured cells can be useful to investigate the secretome of rice blast,pathogen interactions. [source]