Home About us Contact | |||
MR Data (mr + data)
Selected AbstractsGraphic and movie illustrations of human prenatal development and their application to embryological education based on the human embryo specimens in the Kyoto collectionDEVELOPMENTAL DYNAMICS, Issue 2 2006Shigehito Yamada Abstract Morphogenesis in the developing embryo takes place in three dimensions, and in addition, the dimension of time is another important factor in development. Therefore, the presentation of sequential morphological changes occurring in the embryo (4D visualization) is essential for understanding the complex morphogenetic events and the underlying mechanisms. Until recently, 3D visualization of embryonic structures was possible only by reconstruction from serial histological sections, which was tedious and time-consuming. During the past two decades, 3D imaging techniques have made significant advances thanks to the progress in imaging and computer technologies, computer graphics, and other related techniques. Such novel tools have enabled precise visualization of the 3D topology of embryonic structures and to demonstrate spatiotemporal 4D sequences of organogenesis. Here, we describe a project in which staged human embryos are imaged by the magnetic resonance (MR) microscope, and 3D images of embryos and their organs at each developmental stage were reconstructed based on the MR data, with the aid of computer graphics techniques. On the basis of the 3D models of staged human embryos, we constructed a data set of 3D images of human embryos and made movies to illustrate the sequential process of human morphogenesis. Furthermore, a computer-based self-learning program of human embryology is being developed for educational purposes, using the photographs, histological sections, MR images, and 3D models of staged human embryos. Developmental Dynamics 235:468,477, 2006. © 2005 Wiley-Liss, Inc. [source] Isotropic resolution diffusion tensor imaging with whole brain acquisition in a clinically acceptable timeHUMAN BRAIN MAPPING, Issue 4 2002Derek Kenton Jones Abstract Our objective was to develop a diffusion tensor MR imaging pulse sequence that allows whole brain coverage with isotropic resolution within a clinically acceptable time. A single-shot, cardiac-gated MR pulse sequence, optimized for measuring the diffusion tensor in human brain, was developed to provide whole-brain coverage with isotropic (2.5 × 2.5 × 2.5 mm) spatial resolution, within a total imaging time of approximately 15 min. The diffusion tensor was computed for each voxel in the whole volume and the data processed for visualization in three orthogonal planes. Anisotropy data were further visualized using a maximum-intensity projection algorithm. Finally, reconstruction of fiber-tract trajectories i.e., ,tractography' was performed. Images obtained with this pulse sequence provide clear delineation of individual white matter tracts, from the most superior cortical regions down to the cerebellum and brain stem. Because the data are acquired with isotropic resolution, they can be reformatted in any plane and the sequence can therefore be used, in general, for macroscopic neurological or psychiatric neuroimaging investigations. The 3D visualization afforded by maximum intensity projection imaging and tractography provided easy visualization of individual white matter fasciculi, which may be important sites of neuropathological degeneration or abnormal brain development. This study has shown that it is possible to obtain robust, high quality diffusion tensor MR data at 1.5 Tesla with isotropic resolution (2.5 × 2.5 × 2.5 mm) from the whole brain within a sufficiently short imaging time that it may be incorporated into clinical imaging protocols. Hum. Brain Mapping 15:216,230, 2002. © 2002 Wiley-Liss, Inc. [source] The role of angiogenesis, vascular maturation, regression and stroma infiltration in dormancy and growth of implanted MLS ovarian carcinoma spheroidsINTERNATIONAL JOURNAL OF CANCER, Issue 4 2004Assaf Gilead Abstract MLS ovarian epithelial carcinoma multicellular spheroids xenografted subcutaneously in CD-1 nude mice displayed growth delay, or dormancy, of up to 52 days. In the study reported here, implanted MLS spheroids were used for testing the role of angiogenesis and vascular maturation in triggering the initiation of tumor progression. The kinetics and impact of neovascular maturation and functionality, in dormancy, and growth of MLS spheroid xenografts were studied noninvasively by BOLD contrast MRI. MR data were supported by histologic staining for biotinylated albumin as a blood pool marker and alpha-smooth muscle actin (alpha-SMA) as marker for perivascular mural cells. Although the tumor periphery showed higher levels of total and mature vasculature than normal skin, the fraction of mature out of the total vessels as detected by MRI vascular maturation index (VMIMRI) was significantly lower in the tumor both before and after tumor exit from dormancy. The neovasculature induced by the implanted spheroid was unstable and showed cycles of vessel growth and regression. Surprisingly, this instability was not restricted to the immature vessels, but rather included also regression of mature vessels. During dormancy, neovasculature was predominantly peripheral with no infiltration into the implanted spheroid. Infiltration of alpha-SMA positive stroma cells into the spheroid was associated with functional vascularization and tumor growth. Thus, stroma infiltration and vascular maturation are an important checkpoint linking the angiogenic switch with initiation of tumor progression. © 2003 Wiley-Liss, Inc. [source] MRI-guided procedures in various regions of the body using a robotic assistance system in a closed-bore scanner: Preliminary clinical experience and limitations,JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 4 2010Michael Moche MD Abstract Purpose: To present the clinical setup and workflow of a robotic assistance system for image-guided interventions in a conventional magnetic resonance imaging (MRI) environment and to report our preliminary clinical experience with percutaneous biopsies in various body regions. Materials and Methods: The MR-compatible, servo-pneumatically driven, robotic device (Innomotion) fits into the 60-cm bore of a standard MR scanner. The needle placement (n = 25) accuracy was estimated by measuring the 3D deviation between needle tip and prescribed target point in a phantom. Percutaneous biopsies in six patients and different body regions were planned by graphically selecting entry and target points on intraoperatively acquired roadmap MR data. Results: For insertion depths between 29 and 95 mm, the average 3D needle deviation was 2.2 ± 0.7 mm (range 0.9,3.8 mm). Patients with a body mass index of up to ,30 kg/m2 fitted into the bore with the device. Clinical work steps and limitations are reported for the various applications. All biopsies were diagnostic and could be completed without any major complications. Median planning and intervention times were 25 (range 20,36) and 44 (36,68) minutes, respectively. Conclusion: Preliminary clinical results in a standard MRI environment suggest that the presented robotic device provides accurate guidance for percutaneous procedures in various body regions. Shorter procedure times may be achievable by optimizing technical and workflow aspects. J. Magn. Reson. Imaging 2010;31:964,974. ©2010 Wiley-Liss, Inc. [source] Dynamic T1 estimation of brain tumors using double-echo dynamic MR imagingJOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 1 2003Yoshiyuki Ishimori RT Abstract Purpose To assess the clinical utility of a new method for real-time estimation of T1 during the first pass of contrast agent by using this method to examine brain tumors. Materials and Methods The multi-phase spoiled gradient-echo pulse sequence using the double-echo magnetic resonance (MR) technique was modified. In the first half of the pulse sequence, the flip angle was varied systematically. Then, static T1 values were calculated using differences in MR signal intensities between different flip angles. In the latter half of this sequence, changes in absolute T1 were calculated using differences in signal intensities before and after injection of contrast agent. The double-echo MR data were used to minimize the T2* effect. Five cases of neurinoma and seven cases of meningioma were examined. Changes in T1 during the first pass of contrast agent were compared between neurinoma and meningioma. Results Changes in absolute T1 were clearly demonstrated on the parametric map. Although the changes in absolute T1 during the first pass of contrast agent did not allow differentiation between the two types of tumors, the mean gradient after the first pass was statistically higher for neurinoma than for meningioma (P < 0.05; meningioma, 0.011 ± 0.012 second,1/second; neurinoma, 0.034 ± 0.020 second,1/second). Conclusion The present method appears to be useful for estimation of dynamic T1 changes in brain tumors in clinical settings. J. Magn. Reson. Imaging 2003;18:113,120. © 2003 Wiley-Liss, Inc. [source] Magnetic resonance image registration in multiple sclerosis: Comparison with repositioning error and observer-based variabilityJOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 5 2002I Leng Tan MD Abstract Purpose To study the use of image registration in the analysis of multiple sclerosis (MS) lesion volume and compare this with repositioning error and observer-based variability. Materials and Methods The normalized mutual information (NMI) algorithm is evaluated in an accuracy study using a phantom, followed by a validation study on magnetic resonance (MR) data of MS patients. Further, using scan-rescan MR data, the effect of registration on MS lesion volume compared with repositioning error and observer-based variability is assessed. Results The registration accuracy was near perfect in the phantom study, while the in vivo validation study demonstrated an accuracy on the order of 0.2,0.3 mm. In the scan-rescan study, quantification accounted for 15.6% of the relative variance, repositioning for 44.4%, and registration for 40.0%. Conclusion NMI resulted in robust and accurate alignment of MR brain images of MS patients. Its use in the detection of changes in MS using large serial MR imaging (MRI) data warrants future evaluation. J. Magn. Reson. Imaging 2002;15:505,510. © 2002 Wiley-Liss, Inc. [source] |