MPO

Distribution by Scientific Domains
Distribution within Medical Sciences

Terms modified by MPO

  • mpo activity
  • mpo level

  • Selected Abstracts


    Up-and-Coming Markers: Myeloperoxidase, a Novel Biomarker Test for Heart Failure and Acute Coronary Syndrome Application?

    CONGESTIVE HEART FAILURE, Issue 2008
    Christoph Sinning MD
    Myeloperoxidase (MPO) is a mammalian enzyme responsible for generation of hypochlorite. The advantage of myeloperoxidase for use as a biomarker in the setting of heart failure and acute coronary syndrome is the early increase of MPO concentration in response to the acute event. In the setting of heart failure the reported independency of coronary artery disease and general inflammation, as indicated by MPO concentration in comparison to other inflammatory markers or in subgroups of patients with ischemic and non-ischemic cardiomyopathy, has to be highlighted. In terms of ACS, inclusion of MPO into a multiple marker strategy might add to enhance diagnosis and therapy decision making. Therefore, MPO is a biomarker worthwhile of further evaluation in the setting of cardiovascular disease. Congest Heart Fail. 2008;14(4 suppl 1):46,48. ©2008 Le Jacq [source]


    Monitoring of monocyte functional state after extracorporeal circulation: A flow cytometry study

    CYTOMETRY, Issue 1 2004
    Silverio Sbrana
    Abstract Background Cardiovascular surgery with cardiopulmonary bypass (CPB) induces systemic inflammation and postoperative complications depending on pro- and anti-inflammatory mechanisms. Activated polymorphonuclear cells and monocytes may be responsible for morbidity associated with CPB. Knowledge of the monocyte functional state in particular may help to develop protective interventions. Methods Samples were drawn from venous peripheral blood (basal condition, at 4 and 24 h after CPB) and coronary blood (before and after cardioplegic arrest) of 14 patients undergoing cardiac surgery. The following phenotypic and functional parameters of the monocyte population were studied by flow cytometry: surface molecules expression (CD18, CD11a, CD11b, CD14, CD15, CD45, HLA-DR, and Toll-like receptor [TLR]-4), myeloperoxidase (MPO) content, and intracellular cytokine production (tumor necrosis factor [TNF]-,, interleukin [IL]-1,, IL-6, and IL-8). Results Cardiac surgery with CPB induced down-modulation of surface molecules expression on peripheral monocytes, especially at 24 h after CPB, for CD18, CD11a, and CD11b (P < 0.003) and for the CD15 adhesive cluster (P = 0.0028) and HLA-DR (P < 0.001). At 4 h after CPB, downregulation was observed for CD14 (P = 0.004), CD45 (P = 0.014), and CD15 (P = 0.0056). A loss of MPO was detected in venous peripheral (at 24 h after CPB, P = 0.01) or coronary (at reperfusion, P < 0.02) blood. The CD15 cluster complex exhibited a down-modulation in coronary blood (at reperfusion, P = 0.0003). Spontaneous intracellular production of IL-1,, IL-6, and IL-8 decreased at 24 h after CPB (P < 0.05). Conclusions The down-modulation of integrins and adhesive receptor expression and the loss of MPO suggest a strong activation and shedding reaction of circulating monocyte after CPB, further exacerbated by contact with coronary ischemic vessels. The changes of differentiation antigens may reflect the appearance of a partially immature population immediately after CPB. The reduced proinflammatory cytokine production, observed at 24 h after CPB, suggests a functional polarization of circulating monocytes. © 2003 Wiley-Liss, Inc. [source]


    Evaluation of systemic oxidative status and mononuclear leukocytes DNA damage in children with caustic esophageal stricture

    DISEASES OF THE ESOPHAGUS, Issue 4 2006
    M. Kaya
    SUMMARY., Esophageal stricture (ES) due to accidentally caustic digestions is a common problem in children. Mucosal damage and repeated dilatations lead to chronic inflammation and finally ES. We investigated the oxidative status and DNA damage of children with ES. Five children with ES were compared with the same age- and sex-matched healthy subjects. Oxidative status of plasma was evaluated by measuring myeloperoxidase (MPO) activity, and total peroxide (TP) level. Anti-oxidative status of the plasma was evaluated by measuring catalase (CAT) activity, and total antioxidant response (TAR). We used the Single Cell Gel Electrophoresis (also called Comet Assay) to measure DNA strand break in peripheral blood mononuclear leukocytes. Mean MPO activity and TP levels in the ES group were significantly higher than the control group (0.83 ± 0.35, 0.09 ± 0.03 and 0.98 ± 0.38, 0.34 ± 0.20, P = 0.009 and P = 0.047 respectively). There was no significant difference in CAT activity and TAR levels between the two groups (P = 0.347). DNA damage in patients with ES was increased compared to control subjects (108.8 ± 51.2 and 57.6 ± 31.2 arbitrary units, respectively), but this difference was not significant statistically (P= 0.09). This study shows that systemic oxidative stress and alteration at the nuclear level occur in patients with ES, as a result of multiple dilatations and tissue injury. On the other hand, these results support that patients with ES may benefit from antioxidant treatment. [source]


    Protective effect of curcumin, a Curcuma longa constituent, in early colonic inflammation in rats,

    DRUG DEVELOPMENT RESEARCH, Issue 6 2009
    Juan Manuel Sánchez-Calvo
    Abstract Curcumin, a polyphenol derived from the plant, Curcuma longa, has a variety of pharmacological effects, including chemotherapeutic, anti-inflammatory, antiangiogenic, and antioxidant activities. To gain a better understanding of the effects and mechanisms of action of curcumin on the acute injury caused by intra-colonic administration of acetic acid (AA) in rats, inflammation was assessed by histology and myeloperoxidase activity (MPO; an index of neutrophil infiltration in the mucosa); Th1 and Th2 cytokine production; histological and histochemical analysis of the lesions; nitrite production in colon mucosa; and the expression of iNOS, COX-1 and -2 using Western blotting and inmmunohistochemistry. We also studied the involvement of the p38 MAPK/JNK signalling pathway in the protective effect of curcumin in acute colonic inflammation. Curcumin (50,100,mg/kg/day) reduced the degree of colonic injury, the index of neutrophil infiltration and Th1 cytokine secretion, and increased IL-10 production, reduced colonic levels of nitrites, and reduced COX-2 and iNOS overexpression. A reduction in the activation of p38 and JNK MAPKs was also observed. Thus, we show that the widely used food additive, curcumin reduced the development of AA-induced colitis and alleviated the inflammatory response. Inhibition of MAPK signalling by curcumin could explain the changes on the cytokine Th1/Th2 profile, the reduction of COX-2 and iNOS signaling, as well as the decreased nitrite production in colonic mucosa, suggesting that curcumin may be useful in the treatment of ulcerative colitis. Drug Dev Res, 2009. © 2009 Wiley-Liss, Inc. [source]


    Suppression of inflammatory responses by celastrol, a quinone methide triterpenoid isolated from Celastrus regelii

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 9 2009
    D. H. Kim
    Abstract Background, Celastrol, a quinone methide triterpenoid isolated from the Celastraceae family, exhibits various biological properties, including chemopreventive, antioxidant and neuroprotective effects. In this study, we showed that celastrol inhibits inflammatory reactions in macrophages and protects mice from skin inflammation. Materials and methods, Anti-inflammatory effects of celastrol (0,1 ,M) were examined in lipopolysaccharide (LPS)-stimulated RAW 264·7 macrophages. To investigate the effects of celastrol (0,50 ,g per mice) in vivo, activation of myeloperoxidase (MPO) and histological assessment were examined in the 12- O -tetradecanoyl-phorbol-13-acetate (TPA)-induced mouse ear oedema model. Results, Our in vitro experiments showed that celastrol suppressed not only LPS-stimulated generation of nitric oxide and prostaglandin E2, but also expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW264·7 cells. Similarly, celastrol inhibited LPS-induced production of inflammatory cytokines, including tumour necrosis factor-, and interleukin-6. In an animal model, celastrol protected mice from TPA-induced ear oedema, possibly by inhibiting MPO activity and production of inflammatory cytokines. Conclusions, Our data suggest that celastrol inhibits the production of inflammatory mediators and is a potential target for the treatment of various inflammatory diseases. [source]


    Infiltrating cells and related cytokines in lesional skin of patients with chronic idiopathic urticaria and positive autologous serum skin test

    EXPERIMENTAL DERMATOLOGY, Issue 5 2003
    M. Caproni
    Abstract:, In approximately one-third of patients with chronic idiopathic urticaria (CIU), autoantibodies against the high-affinity IgE receptor and/or against IgE can be detected and a wheal-and-flare response can be provoked by the intradermal injection of autologous serum (ASST). In this study we aimed to further characterize the inflammatory response observed in the subgroup of CIU patients with positive ASST and serum-evoked histamine-release in vitro from basophils in comparison with unaffected skin and healthy donors. An immunohistochemical analysis of infiltrating cells (CD4, MPO, EG1, EG2, tryptase), cytokines (IL-4, IL-5, IFN-,), chemokines and chemokine receptors (IL-8, CCR3, CXCR3), and adhesion molecules (ICAM-1, VCAM-1, ELAM-1) was performed on seven selected patients (four males and three females; median age: 45 years; range: 22,57) and five healthy donors. Cytokine evaluation was also performed in five psoriatic patients to obtain an additional control. In spontaneous wheals we observed an increased number of CD4+ T lymphocytes when compared with the controls, and an increased number of neutrophils and eosinophils, whereas mast cells did not show a significant variation. A significant expression for IL-4 and IL-5 could only be observed in lesional skin, while IFN-, showed a slight expression in the same site. Chemokine receptors CCR3 and CXCR3 did not show a defined polarized response in either lesional or unaffected skin. An increased expression of all cellular adhesion molecules (CAMs) studied was detected in spontaneous wheals. The lack of a significant difference in the expression of tryptase + mast cells, T lymphocytes, IL-8, CXCR3 and CCR3, a few CAMs between the lesional and unaffected skin of CIU patients suggests a wide immunological activation that involves not only lesional tissues, but possibly extends to the whole of the skin's immune system. [source]


    Redox properties of the couple compound I/native enzyme of myeloperoxidase and eosinophil peroxidase

    FEBS JOURNAL, Issue 19 2001
    Jürgen Arnhold
    The standard reduction potential of the redox couple compound I/native enzyme has been determined for human myeloperoxidase (MPO) and eosinophil peroxidase (EPO) at pH 7.0 and 25 °C. This was achieved by rapid mixing of peroxidases with either hydrogen peroxide or hypochlorous acid and measuring spectrophotometrically concentrations of the reacting species and products at equilibrium. By using hydrogen peroxide, the standard reduction potential at pH 7.0 and 25 °C was 1.16 ± 0.01 V for MPO and 1.10 ± 0.01 V for EPO, independently of the concentration of hydrogen peroxide and peroxidases. In the case of hypochlorous acid, standard reduction potentials were dependent on the hypochlorous acid concentration used. They ranged from 1.16 V at low hypochlorous acid to 1.09 V at higher hypochlorous acid for MPO and from 1.10 V to 1.03 V for EPO. Thus, consistent results for the standard reduction potentials of redox couple compound I/native enzyme of both peroxidases were obtained with all hydrogen peroxide and at low hypochlorous acid concentrations: possible reasons for the deviation at higher concentrations of hypochlorous acid are discussed. They include instability of hypochlorous acid, reactions of hypochlorous acid with different amino-acid side chains in peroxidases as well as the appearance of a compound I,chloride complex. [source]


    Essential role of C/EBP, in G-CSF-induced transcriptional activation and chromatin modification of myeloid-specific genes

    GENES TO CELLS, Issue 4 2008
    Satoshi Iida
    Granulocyte colony-stimulating factor (G-CSF) regulates the proliferation and differentiation of neutrophilic progenitor cells. Here, we investigated the roles of CCAAT/enhancer-binding protein (C/EBP), in the G-CSF-induced transcriptional activation and chromatin modification of the CCR2 and myeloperoxidase (MPO) genes in IL-3-dependent myeloid FDN1.1 cells. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays revealed that G-CSF activates C/EBP, to bind target promoters. ChIP mapping experiments across the CCR2 and MPO genes showed that G-CSF induces histone H3 modifications: the acetylation of Lys9, trimethylation of Lys4 and trimethylation of Lys9. The distribution profile of the trimethylated Lys9 was distinct from that of the two other modifications. All the G-CSF-induced C/EBP, recruitment, transcriptional activation and histone modifications were reversed by re-stimulation with IL-3, and were abolished by short hairpin RNA (shRNA)-mediated knockdown of C/EBP,. These results indicate that C/EBP, is activated by G-CSF to bind target promoters, and plays critical roles in the transcriptional activation and dynamic chromatin modification of target genes during neutrophil differentiation. [source]


    Stat4 and Stat6 signaling in hepatic ischemia/reperfusion injury in mice: HO-1 dependence of Stat4 disruption-mediated cytoprotection

    HEPATOLOGY, Issue 2 2003
    Xiu-Da Shen
    Ischemia/reperfusion (I/R) injury remains an important problem in clinical organ transplantation. There is growing evidence that T lymphocytes, and activated CD4+ T cells in particular, play a key role in hepatic I/R injury. This study analyzes the role of signal transducer and activator of transcription 4 (Stat4) and Stat6 signaling in liver I/R injury. Using a partial lobar warm ischemia model, groups of wild-type (WT), T cell,deficient, Stat4-/Stat6-deficient knockout (KO) mice were assessed for the extent/severity of I/R injury. Ninety minutes of warm ischemia followed by 6 hours of reperfusion induced a fulminant liver failure in WT and Stat6 KO mice, as assessed by hepatocellular damage (serum alanine aminotransferase [sALT] levels), neutrophil accumulation (myeloperoxidase [MPO] activity) and histology (Suzuki scores). In contrast, T cell deficiency (nu/nu mice) or disruption of Stat4 signaling (Stat4 KO mice) reduced I/R insult. Unlike adoptive transfer of WT or Stat6-deficient T cells, infusion of Stat4-deficient T cells failed to restore hepatic I/R injury and prevented tumor necrosis factor , (TNF-,) production in nu/nu mice. Diminished TNF-,/Th1-type cytokine messenger RNA (mRNA)/protein elaborations patterns, along with overexpression of heme oxygenase-1 (HO-1),accompanied hepatic cytoprotection in Stat4 KO recipients. In contrast, HO-1 depression restored hepatic injury in otherwise I/R resistant Stat4 KOs. In conclusion, Stat4 signaling is required for, whereas Stat4 disruption protects against, warm hepatic I/R injury in mice. The cytoprotection rendered by Stat4 disruption remains HO-1,dependent. [source]


    Signalling mechanisms for Toll-like receptor-activated neutrophil exocytosis: key roles for interleukin-1-receptor-associated kinase-4 and phosphatidylinositol 3-kinase but not Toll/IL-1 receptor (TIR) domain-containing adaptor inducing IFN-, (TRIF)

    IMMUNOLOGY, Issue 3 2009
    Agnieszka A. Brzezinska
    Summary Lipopolysaccharide (LPS) stimulates exocytosis in neutrophils. The signalling molecules involved in the regulation of this mechanism are currently unknown. Using neutrophils from interleukin-1-receptor-associated kinase (IRAK)-4- and Toll/IL-1 receptor (TIR) domain-containing adaptor inducing IFN-, (TRIF)-deficient mice, we dissected the signalling pathways that control exocytosis. We analysed exocytosis of peroxidase-negative and azurophilic granules by following the mobilization of the ,2-integrin subunit CD11b and myeloperoxidase (MPO)-containing granules, respectively. IRAK-4-null neutrophils showed marked defects in both peroxidase-negative and azurophilic granule exocytosis in response to LPS. In contrast, the exocytic response to LPS of TRIF-deficient neutrophils was not different from that of wild-type cells. No differences were observed in the exocytosis of secretory organelles between IRAK-4-null and wild-type neutrophils when they were stimulated with the phorbol ester phorbol 12-myristate 13-acetate (PMA). Electron microscopy analysis showed that no morphological abnormalities were present in the granules of IRAK-4-deficient neutrophils, suggesting that the lack of exocytic response to LPS is not attributable to developmental abnormalities. Using pharmacological inhibitors, we found that p38 mitogen-activated protein kinase (p38MAPK) is essential for the exocytosis of all neutrophil secretory organelles in response to LPS. Interestingly, we found that phosphatidylinositol 3-kinase (PI3K) is essential for azurophilic granule exocytosis but not for the mobilization of other neutrophil granules in response to LPS. Azurophilic granule exocytosis in response to Listeria monocytogenes was dependent on PI3K but not IRAK-4 activity, suggesting that alternative signalling pathways are activated in IRAK-4-deficient neutrophils exposed to whole bacteria. Our results identified IRAK-4, p38MAPK and PI3K as important regulatory components with different roles in the signalling pathways that control Toll-like receptor ligand-triggered neutrophil exocytosis. [source]


    Dipeptidyl peptidase expression during experimental colitis in mice

    INFLAMMATORY BOWEL DISEASES, Issue 8 2010
    Roger Yazbeck PhD
    Abstract Background: We have previously demonstrated that inhibition of dipeptidyl peptidase (DP) activity partially attenuates dextran sulfate sodium (DSS) colitis in mice. The aim of this study was to further investigate the mechanisms of this protection. Materials and Methods: Wildtype (WT) and DPIV,/, mice consumed 2% DSS in drinking water for 6 days to induce colitis. Mice were treated with saline or the DP inhibitors Ile-Pyrr-(2-CN)*TFA or Ile-Thia. DP mRNA and enzyme levels were measured in the colon. Glucagon-like peptide (GLP)-2 and GLP-1 concentrations were determined by radioimmunoassay, regulatory T-cells (Tregs) by fluorescence activated cell sorting (FACS) on FOXp3+T cells in blood, and neutrophil infiltration assessed by myeloperoxidase (MPO) assay. Results: DP8 and DP2 mRNA levels were increased (P < 0.05) in WT+saline mice compared to untreated WT mice with colitis. Cytoplasmic DP enzyme activity was increased (P < 0.05) in DPIV,/, mice at day 6 of DSS, while DP2 activity was increased (P < 0.05) in WT mice with colitis. GLP-1 (63%) and GLP-2 (50%) concentrations increased in WT+Ile-Pyrr-(2-CN)*TFA mice compared to day-0 controls. MPO activity was lower in WT+Ile-Thia and WT+Ile-Pyrr-(2-CN)*TFA treated mice compared to WT+saline (P < 0.001) at day 6 colitis. Conclusions: DP expression and activity are differentially regulated during DSS colitis, suggesting a pathophysiological role for these enzymes in human inflammatory bowel disease (IBD). DP inhibitors impaired neutrophil recruitment and maintenance of the Treg population during DSS-colitis, providing further preclinical evidence for the potential therapeutic use of these inhibitors in IBD. Finally, DPIV appears to play a critical role in mediating the protective effect of DP inhibitors. Inflamm Bowel Dis 2010 [source]


    Suppression of experimental colitis in mice by CD11c+ dendritic cells

    INFLAMMATORY BOWEL DISEASES, Issue 2 2009
    Joseph E. Qualls PhD
    Abstract Background: The innate immune system serves a critical role in homeostasis of the gastrointestinal (GI) tract. Both macrophages (MØs) and dendritic cells (DCs) have been shown to have pathogenic roles in animal models of inflammatory bowel disease. However, studies by several labs have established that resident MØs and DCs within the normal GI tract maintain an immunosuppressive phenotype compared to that seen in other peripheral sites. Recent studies by our lab demonstrated that the depletion of both MØs and DCs before the initiation of dextran sodium sulfate (DSS)-induced colitis resulted in exacerbation of disease, partly caused by increased neutrophil influx. Methods/Results: In this current report, DSS-induced colitis was shown to be significantly more severe when DCs were selectively depleted in mice as indicated by changes in weight loss, stool consistency, rectal bleeding, and histopathology. In contrast to enhanced colitis in MØ/DC-depleted mice, which was associated with increased neutrophil influx, increased colitis in DC-depleted mice was not associated with an increase in neutrophils in the colon, as shown by CXCL1 chemokine levels and myeloperoxidase (MPO) activity. However, increased IL-6 gene and protein expression in colon tissues correlated positively with increased colitis severity in DC-depleted mice compared to colitis in DC-intact mice. Conclusions: This study demonstrates that resident DCs can suppress the severity of acute DSS colitis and that regulation of IL-6 production may contribute to DC-mediated control of intestinal inflammation. (Inflamm Bowel Dis 2008) [source]


    Myeloperoxidase (MPO) genotype and lung cancer histologic types: The MPO ,463 A allele is associated with reduced risk for small cell lung cancer in smokers

    INTERNATIONAL JOURNAL OF CANCER, Issue 5 2002
    Heike Dally
    Abstract MPO participates in the metabolic activation of tobacco carcinogens such as PAHs. A frequent MPO ,463 G,A polymorphism in the promoter region reduces MPO transcription and has been correlated with >4-fold lower benzo[a]pyrene,DNA adduct levels in the skin of coal tar,treated patients. Four of 7 case-control studies found significantly reduced lung cancer risk associated with the A allele. Due to their different etiologies, we examined whether the MPO genotype affects histologic lung cancer types differentially. A case-control study was conducted in 625 ever-smoking lung cancer patients, including 228 adenocarcinomas, 224 SCCs, 135 SCLCs and 340 ever-smoking hospital controls. MPO genotyping was performed by capillary PCR followed by fluorescence-based melting curve analysis. Combining the MPO ,463 (G/A+A/A) genotypes, a protective effect approaching significance (OR = 0.75, 95% CI 0.55,1.01) was observed when comparing all lung cancer cases to controls. Among histologic types of lung cancer, a weak protective effect was found for both adenocarcinoma (OR = 0.81, CI 0.55,1.19) and SCC (OR = 0.82, CI 0.56,1.21); a stronger and significant effect was found for SCLC (OR = 0.58, CI 0.36,0.95; p = 0.029). Our results also suggest that the MPO genotype varies among inflammatory nonmalignant lung diseases. In conclusion, our results emphasize the need for a separate analysis of lung cancer histologic types and an adjustment for inflammatory nonmalignant lung diseases in future MPO-related studies. We confirm that the MPO ,463 A variant affords a protective effect against lung cancer risk in smokers, which was strongest for SCLC patients. © 2002 Wiley-Liss, Inc. [source]


    Kinetics of inhibition of peroxidase activity of myeloperoxidase by quercetin

    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 7 2008
    Tatjana Momi
    The inhibition of myeloperoxidase (MPO), isolated from human neutrophils, by quercetin was investigated by following peroxidase activity of the enzyme using o -dianisidine as the substrate. The inhibition parameters (IC50) were obtained by graphical analysis of the inhibition curves. A reaction mechanism, which involved the enzyme inhibition by quercetin and H2O2 in excess, was proposed. The rate and equilibrium constants for the proposed reaction path were calculated from experimental data. Kinetic analysis in noninhibiting H2O2 concentration range in the absence and the presence of quercetin revealed that the reaction mechanism underwent Michaelis,Menten kinetics. K and V values indicated that quercetin was a mixed inhibitor of MPO activity. The initial reaction rates were recalculated using the obtained results. Calculated curves fitted the experimental results within the range of experimental error. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 384,394, 2008 [source]


    Effect of reactive oxygen intermediaries on the viability and infectivity of Mycobacterium lepraemurium

    INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 3 2007
    Kendy Wek-Rodriguez
    Summary Murine leprosy is a natural disease of the mouse, the most popular model animal used in biomedical research; the disease is caused by Mycobacterium lepraemurium (MLM), a successful parasite of macrophages. The aim of the study was to test the hypothesis that MLM survives within macrophages because it highly resists the toxic effects of the reactive oxygen intermediaries produced by these cells in response to infection by the microorganism. MLM cells were incubated in the presence of horseradish peroxidase (HRPO),H2O2,halide for several periods of time. The peroxidative effect of this system was investigated by assessing the changes occurred in (a) lipid composition; (b) viability; and (c) infectivity of the microorganism. Changes in the lipid composition of peroxidated- vs. intact-MLM were analysed by thin layer chromatography. The effect of the peroxidative system on the viability and infectivity of MLM was measured by the alamar blue reduction assay and by its ability to produce an infection in the mouse, respectively. Peroxidation of MLM produced drastic changes in the lipid envelope of the microorganism, killed the bacteria and abolished their ability to produce an in vivo infection in the mouse. In vitro, MLM is highly susceptible to the noxious effects of the HRPO,H2O2,halide system. Although the lipid envelope of MLM might protect the microorganism from the peroxidative substances produced at ,physiological' concentrations in vivo, the success of MLM as a parasite of macrophages might rather obey for other reasons. The ability of MLM to enter macrophages without triggering these cells' oxidative response and the lack of granular MPO in mature macrophages might better explain its success as an intracellular parasite of these cells. [source]


    Biocompatibility of Heparin-Coated Cardiopulmonary Bypass Circuits in Coronary Patients With Left Ventricular Dysfunction Is Superior to PMEA-Coated Circuits

    JOURNAL OF CARDIAC SURGERY, Issue 6 2006
    Veysel Kutay M.D.
    The aim of this study was to evaluate the clinical effectiveness and biocompatibility of heparin-coated and poly-2-methoxyethylacrylate (PMEA)-coated CPB circuits on coronary patients with left ventricular systolic dysfunction. Methods: Thirty-six patients who underwent elective coronary artery bypass grafting were divided into two equal groups: group H (n = 18), heparin-coated; group P (n = 18), PMEA coated. Clinical outcomes, hematologic variables, cardiac enzymes, malondialdehyde (MDA), and acute phase inflammatory response (including myeloperoxidase (MPO), catalase, hsCRP, and IL-8) were analyzed perioperatively. Results: Demographic, CPB, and clinical outcome data were similar for both groups. Plasma fibrinogen, total protein, albumin, and platelet count decreased, neutrophil count, MDA, IL-8, MPO, and catalase levels increased during CPB. During CPB, MPO and catalase values were significantly higher in group P (p = 0.02 and p = 0.01) and postoperative MDA concentration was lower in group H (p = 0.03). Platelet counts were better preserved in group H during and after CPB but neutrophil count and IL-8 level did not differ between the groups. Postoperative total protein, albumin, and fibrinogen levels were higher in group H (p < 0.05). The postoperative first day levels of troponin-I, CK-MB, and CRP increased in both groups without any significant differences between the groups. Conclusions: Heparin-coated circuit provided better suppression of perioperative inflammatory markers and exhibited more favorable effects on hematologic variables than PMEA-coated circuit. [source]


    Carboxy-terminal fragment of osteogenic growth peptide regulates myeloid differentiation through RhoA

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2004
    Letizia Mattii
    Abstract The carboxy-terminal fragment of osteogenic growth peptide, OGP(10,14), is a pentapeptide with bone anabolic effects and hematopoietic activity. The latter activity appears to be largely enhanced by specific growth factors. To study the direct activity of OGP(10,14) on myeloid cells, we tested the pentapeptide proliferating/differentiating effects in HL60 cell line. In this cell line, OGP(10,14) significantly inhibited cell proliferation, and enhanced myeloperoxidase (MPO) activity and nitroblue tetrazolium reducing ability. Moreover, it induced cytoskeleton remodeling and small GTP-binding protein RhoA activation. RhoA, which is known to be involved in HL60 differentiation, mediated these effects as shown by using its specific inhibitor, C3. Treatment with GM-CSF had a comparable OGP(10,14) activity on proliferation, MPO expression, and RhoA activation. Further studies on cell proliferation and RhoA activation proved enhanced activity by association of the two factors. These results strongly suggest that OGP(10,14) acts directly on HL60 cells by activating RhoA signaling although other possibilities cannot be ruled out. © 2004 Wiley-Liss, Inc. [source]


    PMN responses in chronic periodontal disease: evaluation by gingival crevicular fluid enzymes and elastase-alpha-1-proteinase inhibitor complex

    JOURNAL OF CLINICAL PERIODONTOLOGY, Issue 6 2002
    Rainer Buchmann
    Abstract Objectives: In the present trial, the hypothesis was examined that the local PMN responses in untreated and treated chronic periodontitis can be differentiated by gingival crevicular fluid lysosomal enzyme activities and elastase-alpha-1-proteinase inhibitor complex. Methods: In nine subjects (average age 49.2 ± 7.1 years) with chronic periodontitis, clinical parameters and markers of the PMN-derived inflammatory tissue response in gingival crevicular fluid (GCF) were assessed before and 6 months after surgical periodontal therapy. Myeloperoxidase (MPO), beta-N-acetyl-hexosaminidase (beta-NAH) and cathepsin D (CD) were analyzed as indicators of the PMN-associated host tissue destruction, and elastase-alpha-1-proteinase inhibitor complex (alpha-1-EPI) as the major serum protein inactivating PMN elastase. The total activities of the lysosomal enzymes MPO and beta-NAH were evaluated spectrophotometrically, the CD levels by liquid scintillation counting with [14C] hemoglobin as substrate, and the total alpha-1-proteinase inhibitor complex using a sandwich-immunoassay. Results: The clinical parameters revealed a statistical significant decrease at the 6-month reexamination. PD levels dropped from 5.40 to 2.88 mm (change 2.52 ± 1.04 mm), the CAL scores from 6.67 to 4.43 mm (change 2.24 ± 0.77 mm). The 30 s GCF volumes dropped from 129.8 to 68.6, displaying a change of 61.1 ± 18.6, p , 0.05. The decrease in total MPO, beta-NAH and CD levels (medians: 1.7/0.6 µU MPO, 0.035/0.020 µU beta-NAH, 1.3/0.5 ng CD) following therapy was associated with a significant drop in total GCF amounts of alpha-1-EPI from 76.3 ng at baseline to 52.4 ng after 6 months. Conclusion: The clinical healing in chronic periodontal disease is associated with a downregulation of the local PMN responses following periodontal therapy. The reorganization of periodontal tissues is characterized by a decrease of lysosomal enzyme activities and the alpha-1-proteinase inhibitor complex in gingival crevicular fluid. [source]


    Fecal lactoferrin, myeloperoxidase and serum C-reactive are effective biomarkers in the assessment of disease activity and severity in patients with idiopathic ulcerative colitis

    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 11 2009
    Ibrahim Masoodi
    Abstract Background and Aim:, Disease activity and severity of ulcerative colitis (UC) is assessed using colonoscopy, which is invasive, costly and has poor patient acceptability. The role of non-invasive biomarkers of intestinal inflammation in the evaluation of patients with UC is not known. The aim of the study was to examine the role of serum C-reactive protein (SCRP), fecal myeloperoxidase (FMPO) and fecal lactoferrin (FLF) in assessing disease severity, activity and response to therapy. Methods:, Consecutive patients with idiopathic UC (IUC) attending our hospital from July 2005 to September 2006 were studied. All underwent clinical, endoscopic and histological assessment for disease activity, extent, severity and estimation of SCRP, FMPO and FLF levels at baseline and follow up (FU). An equal number of healthy age-matched controls were studied for biomarker levels. Results:, A total of 37 patients (mean age 37 ± 12 years) were studied. All three biomarkers were elevated more often in the cases than in the controls (all P = 0.000). Cases with severe IUC had higher CRP, MPO and FLF titers than those without severe IUC. At FU, a significant fall in biomarker levels paralleled the reduction in Mayo's scores. All three biomarkers showed a high degree of correlation with each other. The areas under the curve for FLF, MPO and CRP were 1.00, 0.867 and 0.622, respectively. The sensitivity and specificity of markers were: FLF (94%, 100%), FMPO (89%, 51%) and SCRP (24%, 100%). Conclusion:, Biomarkers are useful in assessing disease activity, severity and response to therapy in patients with UC. They showed a high degree of correlation with each other. [source]


    The effect of sildenafil, a phosphodiesterase-5 inhibitor, on acetic acid-induced colonic inflammation in the rat

    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 6 2009
    Sevgin Ozlem Iseri
    Abstract Background and Aim:, Sildenafil, a selective and potent inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase (PDE)5, has a relaxant effect on the smooth muscle cells of the arterioles supplying the human corpus cavernosum acting via nitric oxide (NO)-dependent mechanism. This study aimed to investigate the possible protective effect of sildenafil citrate on the extent of tissue integrity, oxidant-antioxidant status and neutrophil infiltration to the inflamed organ in a rat model of acetic acid-induced colitis. Methods:, Colitis was induced by intrarectal administration of 1 mL of 5% acetic acid to Sprague-Dawley rats (200,250 g; n = 7,8/group). Control rats received an equal volume of saline intrarectally. In treatment groups, the rats were treated with either sildenafil citrate (5 mg/kg/day; subcutaneously) or saline for 3 days. After decapitation, distal colon was weighed and scored macroscopically and microscopically. Tissue samples were used for the measurement of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity, and oxidant production. Trunk blood was collected for the assessment of serum tumor necrosis factor (TNF)-, and interleukin (IL)-1, levels. Results:, In the colitis group, the colonic tissue was characterized by lesions, increased lipid peroxidation with a concomitant reduction in GSH content, increased MPO activity and oxidant production. Serum TNF-, and IL-1, levels were higher in the colitis group compared to control values. Sildenafil reversed these inflammatory parameters nearly back to control values. Conclusions:, Sildenafil citrate administration to rats with acetic acid-induced colitis seems to be beneficial via prevention of lipid peroxidation, oxidant generation, cytokine production and neutrophil accumulation. [source]


    Role of interleukin-18 in the development of acute pulmonary injury induced by intestinal ischemia/reperfusion and its possible mechanism

    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 2 2007
    Yong-jie Yang
    Abstract Background and Aims:, Lung injury is an important target for the systemic inflammatory response associated with intestinal ischemia/reperfusion (I/R). In the present study, the role of interleukin (IL)-18 in the development of acute pulmonary injury induced by intestinal I/R and its possible mechanism in relation to the increased activity of inducible nitric oxide synthase and tumor necrosis factor (TNF)-, were investigated. Methods:, Mice were randomly divided into three groups: normal control group without operation; sham group with sham operation; and I/R group in which mice underwent superior mesenteric artery occlusion for 30 min followed by reperfusion for 3 h. Each group received pretreatment with exogenous IL-18, anti-IL-18 neutralizing antibody or L-NIL, the selective inhibitor of inducible nitric oxide synthase, 30 min before ischemia. The expression of TNF-, was detected by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Lung injury was evaluated by means of Evans blue dye (EBD) concentration, myeloperoxidase (MPO) activity and morphological analysis. Results:, The experimental results showed that both in the sham-operated and I/R groups of animals, pretreatment with exogenous IL-18 clearly enhanced pulmonary MPO activity, microvascular leakage and the expression of TNF-, mRNA and protein. In contrast, IL-18 did not increase the TNF-, level and degree of lung injury, although it clearly enhanced the pulmonary MPO activity in normal animals. Meanwhile, IL-18 antibody given prior to ischemia led to a reduction in the sequestration of neutrophils, extravasation of EBD and downregulation of the serum level of TNF-, in the I/R group of animals. In addition, selective inhibition of inducible nitric oxide synthase (iNOS) that inhibited plasma extravasation and pulmonary injury without affecting the MPO activity could be demonstrated in all treated animals. Conclusions:, These data suggested a role of IL-18 in the activation and sequestration of neutrophils in lungs. Our results were consistent with the hypothesis that increased sequestration of neutrophils and microvascular leakage might, respectively, relate to the increased IL-18 level and the elevation of TNF-,/iNOS activity, and these two aspects might synergically contribute to intestinal I/R-induced pulmonary dysfunction. [source]


    Protective effect of rebamipide on indomethacin-induced intestinal damage in rats

    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 10 2001
    Hiroyuki Mizoguchi
    Abstract Background and Aim: We evaluated the effect of rebamipide (2-(4-chlorobenzoylamino)-3-[2(1H)-quinolinon-4-yl] propionic acid), a novel anti-ulcer drug, on indomethacin-induced small intestinal lesions in rats. Methods: The animals were administered indomethacin (10 mg/kg, s.c.), and they were killed 24 h later. Rebamipide (30,300 mg/kg) was administered p.o. twice, 30 min before, and 6 h after indomethacin. Results: Indomethacin caused hemorrhagic lesions in the rat small intestine, accompanied by an increase in enterobacterial translocation, inducible nitric oxide synthase (iNOS) and myeloperoxidase (MPO) activities, as well as thiobarbituric acid (TBA) reactants, and these changes were significantly prevented by the supplementation with 16,16-dimethyl prostaglandin E2 (dmPGE2; 10 ,g/kg, i.v.) or the pretreatment of animals with the antibiotic ampicillin. Treatment of the animals with rebamipide dose-dependently prevented the development of intestinal lesions, and this effect was mimicked by i.v. administration of superoxide dismutase (SOD: 3000 U/kg) + catalase (CAT: 5000 U/kg). The protection by rebamipide was accompanied by a significant suppression of the increase in both MPO and iNOS activities, and a complete inhibition of the increase in TBA reactants, while SOD + CAT significantly inhibited the increase of MPO activity and TBA reactants, but not iNOS activity. The bacterial translocation following indomethacin was also significantly decreased by either rebamipide or SOD + CAT. Conclusion: These results confirmed the importance of enterobacteria and iNOS/NO in the pathogenesis of indomethacin-induced small intestinal lesions, and suggested that rebamipide prevents the development of these lesions, probably by its radical scavenging action. [source]


    Transesterification of dimethyl oxalate with phenol over TiO2/SiO2: Catalyst screening and reaction optimization

    AICHE JOURNAL, Issue 12 2008
    Xia Yang
    Abstract Physicochemical properties of silica-supported titanium oxide catalysts as well as their performances for transesterification of dimethyl oxalate (DMO) with phenol to methyl phenyl oxalate (MPO) and diphenyl oxalate (DPO) have been investigated systematically. Various wt % of TiO2 were loaded on SiO2 by a two-step wet impregnation method. The surface properties of TiO2/SiO2 catalysts were explored by various characterization techniques (BET, SEM, ICP, XPS, XRD, FTIR of pyridine adsorption, and NH3 -TPD). Catalytic performances of TiO2/SiO2 catalysts were found to be strongly dependent on TiO2 dispersion and surface acidity. Monolayer dispersion capacity of TiO2 on silica was estimated to be about 4.0 TiO2 molecules per nm2 (SiO2) and no crystalline TiO2 was detected at TiO2 loading less than 12 wt %. FTIR and TPD analysis suggested that weak Lewis acid sites on the surface of TiO2/SiO2 were responsible for their unique selectivity to the target products, MPO and DPO. An optimization of reaction conditions for the transesterification of DMO with phenol was performed over 12 wt % TiO2/SiO2 calcined at 550°C. In addition, we studied the disproportionation reaction from MPO to DPO via a catalytic distillation process, which is highly efficient to promote formation of the desired DPO. © 2008 American Institute of Chemical Engineers AIChE J, 2008 [source]


    Antimicrobial activity of platelet-leukocyte gel against Staphylococcus aureus

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2008
    Dirk Jan F. Moojen
    Abstract Platelet-leukocyte gel (PLG) contains high concentrations of platelets and leukocytes. As leukocytes play an important role in the innate host-defense, we hypothesized that PLG might have antimicrobial properties. This study investigated the antimicrobial activity of PLG against Staphylococcus aureus and the contribution of myeloperoxidase (MPO), present in leukocytes, in this process. Platelet-rich plasma (PRP) and platelet-poor plasma (PPP) were obtained from whole blood of six donors. PLG was prepared by mixing PRP with autologous (PLG-AT) or bovine thrombin (PLG-BT). Antimicrobial activity of PLG-AT, PLG-BT, PRP, and PPP was determined in a bacterial kill assay. MPO release was measured by ELISA and activity was measured using a MPO activity assay. Cultures showed a rapid decrease in the number of bacteria for both PLG-AT and PLG-BT, which was maximal between 4 and 8 h, to approximately 1% of the bacteria in controls. The effect of PLG-AT was largest and significantly different compared to PRP (p,=,0.004) and PPP (p,<,0.001), however not compared to PLG-BT (p,=,0.093). PLG-AT, PLG-BT, and PRP showed a comparable, gradually increasing MPO release. MPO activity was comparable for all groups and remained stable. No correlation between MPO release, activity, and bacterial kill could be found. PLG appears to have potent antimicrobial capacity, but the role of MPO in this activity is questionable. PLG might represent a useful strategy against postoperative infections. However, additional research should elucidate its exact antimicrobial activity. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:404,410, 2008 [source]


    Myeloperoxidase and chlorinated peptides in osteoarthritis: potential biomarkers of the disease

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 9 2007
    Marla J. Steinbeck
    Abstract Osteoarthritis (OA) is a disabling condition in which multiple initiating events or conditions (heritable and nonheritable) result in eventual loss of articular cartilage. However, the etiology of OA remains poorly understood, and diagnosis of early disease is difficult due to the lack of specific identifiers. Recent literature suggests that a series of inflammatory processes may be involved in initiating and propagating OA. We hypothesized that products of neutrophils and macrophages, namely myeloperoxidase (MPO), a specific enzyme responsible for the production of both highly reactive hypochlorous acid (HOCl) and chlorine gas (Cl2) and chlorinated peptides, may be present in the synovial fluid of patients with OA. We examined the synovial fluid from 30 patients to identify and profile the presence of MPO. We divided the samples into three groups using radiographic and clinical assessment: (1) control, patients with acute knee injury with no history of OA and no radiographic evidence of OA; (2) early OA, patients with a mild OA based on radiographs; and (3) late OA, patients with a longstanding history of OA and with radiographic evidence of complete joint loss. Patients with early OA demonstrated significantly elevated levels of MPO. We also demonstrated the presence of HOCl and Cl2 modified proteins (Cl-peptides) in early OA synovial fluid samples by liquid chromatography and mass spectrometry. Patients in the control and advanced OA groups demonstrated little elevation in MPO levels and Cl-peptides were undetectable. These results indicate that MPO and Cl-peptides may serve as diagnostic markers for the detection of early OA. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:1128,1135, 2007 [source]


    Pomegranate peel extract prevents liver fibrosis in biliary-obstructed rats

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 9 2007
    Hale Z. Toklu
    ABSTRACT Punica granatum L. (pomegranate) is a widely used plant that has high nutritional value. The aim of this study was to assess the effect of chronic administration of pomegranate peel extract (PPE) on liver fibrosis induced by bile duct ligation (BDL) in rats. PPE (50 mg kg,1) or saline was administered orally for 28 days. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) levels were determined to assess liver function and tissue damage. Proinflammatory cytokines (tumor necrosis factor-alpha and interleukin 1 beta) in the serum and anti-oxidant capacity (AOC) were measured in plasma samples. Samples of liver tissue were taken for measurement of hepatic malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen content. Production of reactive oxidants was monitored by chemilumi-nescence assay. Serum AST, ALT, LDH and cytokines were elevated in the BDL group compared with the control group; this increase was significantly decreased by PPE treatment. Plasma AOC and hepatic GSH levels were significantly depressed by BDL but were increased back to control levels in the PPE-treated BDL group. Increases in tissue MDA levels and MPO activity due to BDL were reduced back to control levels by PPE treatment. Similarly, increased hepatic collagen content in the BDL rats was reduced to the level of the control group with PPE treatment. Thus, chronic PPE administration alleviated the BDL-induced oxidative injury of the liver and improved the hepatic structure and function. It therefore seems likely that PPE, with its antioxidant and antifibrotic properties, may be of potential therapeutic value in protecting the liver from fibrosis and oxidative injury due to biliary obstruction. [source]


    Melatonin, a potent regulator of hemeoxygenase-1, reduces cardiopulmonary bypass-induced renal damage in rats

    JOURNAL OF PINEAL RESEARCH, Issue 3 2009
    Zhongqiu Wang
    Abstract:, Acute renal dysfunction is a frequent complication after cardiac surgery with cardiopulmonary bypass (CPB). This study was designed to evaluate the potential protective effect of melatonin on CPB-induced renal damage in a rat model. Forty male Sprague,Dawley rats were randomly divided into four groups: sham, control (CPB + placebo), low dose of melatonin (CPB + 10 mg/kg melatonin) and high dose of melatonin (CPB + 20 mg/kg melatonin). Blood samples were collected at the beginning, at the end of CPB, and at 0.5, 1, 2, 3, and 24 hr postoperation. Serum creatinine and blood urea nitrogen levels were assayed. Rats were killed 24 hr after surgery, the histologic appearance of the kidney and malondialdehyde (MDA), myeloperoxidase (MPO), catalase (CAT) and superoxide dismutase (SOD) contents were determined. The expression levels of hemeoxygenase-1 (HO-1) protein and gene were determined using western blotting and real-time PCR, respectively. In the control group, CPB surgery significantly increased urea, creatinine levels in serum, MDA and MPO levels in tissues, while decreasing SOD and CAT activities in tissues. Histopathologic findings of the control group confirmed that there was renal impairment by cast formation and tubular necrosis in the tubular epithelium. These changes were markedly reversed in both low dose of melatonin and high dose of melatonin groups. Furthermore, HO-1 gene transcript and protein were significantly upregulated in the kidney tissues after melatonin treatment compared with the placebo treatment. Our findings show that melatonin was effective in preventing CPB-induced renal damage probably through its antioxidant function and upregulation of HO-1. [source]


    Melatonin reduces experimental subarachnoid hemorrhage-induced oxidative brain damage and neurological symptoms

    JOURNAL OF PINEAL RESEARCH, Issue 3 2009
    Mehmet Ersahin
    Abstract:, Oxidative stress has detrimental effects in several models of neurodegenerative diseases, including subarachnoid hemorrhage (SAH). This study investigated the putative neuroprotective effect of melatonin, a powerful antioxidant, in a rat model of SAH. Male Wistar albino rats were divided as control, vehicle-treated SAH, and melatonin-treated (10 mg/kg, i.p.) SAH groups. To induce SAH, 0.3 mL blood was injected into cisterna magna of rats. Forty-eight hours after SAH induction, neurological examination scores were measured and the rats were decapitated. Brain tissue samples were taken for blood,brain barrier (BBB) permeability, brain water content, histological examination, or determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO), and Na+ -K+ -ATPase activities. Formation of reactive oxygen species in brain tissue samples was monitored by using a chemiluminescence (CL) technique. The neurological examination scores were increased in SAH groups on the second day of SAH induction and SAH caused a significant decrease in brain GSH content and Na+ -K+ -ATPase activity, which was accompanied with significant increases in CL, MDA levels, and MPO activity. On the other hand, melatonin treatment reversed all these biochemical indices as well as SAH-induced histopathological alterations, while increased brain water content and impaired BBB were also reversed by melatonin treatment. This study suggests that melatonin, which can easily cross BBB, alleviates SAH-induced oxidative stress and exerts neuroprotection by preserving BBB permeability and by reducing brain edema. [source]


    Melatonin protects against endosulfan-induced oxidative tissue damage in rats

    JOURNAL OF PINEAL RESEARCH, Issue 4 2008
    Gülden Z. Omurtag
    Abstract:, Endosulfan is a chlorinated cyclodiene insecticide which induces oxidative stress. In this study, we investigated the possible protective effect of melatonin, an antioxidant agent, against endosulfan (Endo)-induced toxicity in rats. Wistar albino rats (n = 8) were administered endosulfan (22 mg/kg/day orally) followed by either saline (Endo group) or melatonin (10 mg/kg/day, Endo + Mel group) for 5 days. In other rats, saline (control group) or melatonin (10 mg/kg/day, Mel group) was injected for 5 days, following corn oil administration (vehicle of endosulfan). Measurement of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen content were performed in liver and kidney. Furthermore, aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), and creatinine levels, lactate dehydrogenase (LDH) activity were measured in the serum samples, while tumor necrosis factor-, (TNF-,), interleukin-, (IL-,) and total antioxidant capacity (AOC) were assayed in plasma samples. Endosulfan administration caused a significant decrease in tissue GSH and plasma AOC, which was accompanied with significant rises in tissue MDA and collagen levels and MPO activity. Moreover, the proinflammatory mediators (TNF-, and IL-,), LDH activity, AST, ALT, creatinine and BUN levels were significantly elevated in the endosulfan-treated rats. On the other hand, melatonin treatment reversed all these biochemical alterations induced by endosulfan. Our results suggest that oxidative mechanisms play an important role in endosulfan-induced tissue damage and melatonin, by inhibiting neutrophil infiltration, balancing oxidant,antioxidant status and regulating the generation of inflammatory mediators, ameliorates oxidative organ injury as a result of endosulfan toxicity. [source]


    Melatonin limits lung injury in bleomycin treated mice

    JOURNAL OF PINEAL RESEARCH, Issue 2 2005
    Tiziana Genovese
    Abstract:, Melatonin is the principal secretory product of the pineal gland and its role as an immuno-modulator is well established. Recent evidence shows that melatonin is a scavenger of oxyradicals and peroxynitrite and exerts protective effects in septic shock, hemorrhagic shock and inflammation. The aim of this study was to investigate the effect of melatonin on the lung injury caused by bleomycin (BLM) administration. Mice subjected to intratracheal administration of BLM developed significant lung injury characterized by a marked neutrophil infiltration [assessed by myeloperoxidase (MPO) activity] and by tissue edema. In addition, an increase of immunoreactivity to nitrotyrosine, poly-ADP-ribose (PAR) was also observed in the lung of BLM-treated mice. Also, lung injury induced by BLM administration was correlated with a significant loss of body weight and with a significant mortality. Administration of melatonin (10 mg/kg i.p.) daily significantly reduced the (i) loss of body weight, (ii) mortality rate, (iii) infiltration of the lung with polymorphonuclear neutrophils (MPO activity), (iv) edema formation and (v) histological evidence of lung injury. Administration of melatonin also markedly reduced the nitrotyrosine and PAR formation. Taken together, our results demonstrate that treatment with melatonin significantly reduces lung injury induced by BLM in the mice. [source]