Home About us Contact | |||
MMP-9 mRNA (mmp-9 + mrna)
Selected AbstractsOne of the duplicated matrix metalloproteinase-9 genes is expressed in regressing tail during anuran metamorphosisDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 4 2006Kenta Fujimoto The drastic morphological changes of the tadpole are induced during the climax of anuran metamorphosis, when the concentration of endogenous thyroid hormone is maximal. The tadpole tail, which is twice as long as the body, shortens rapidly and disappears completely in several days. We isolated a cDNA clone, designated as Xl MMP-9TH, similar to the previously reported Xenopus laevis MMP-9 gene, and showed that their Xenopus tropicalis counterparts are located tandemly about 9 kb apart from each other in the genome. The Xenopus MMP-9TH gene was expressed in the regressing tail and gills and the remodeling intestine and central nervous system, and induced in thyroid hormone-treated tail-derived myoblastic cultured cells, while MMP-9 mRNA was detected in embryos. Three thyroid hormone response elements in the distal promoter and the first intron were involved in the upregulation of the Xl MMP-9TH gene by thyroid hormone in transient expression assays, and their relative positions are conserved between X. laevis and X. tropicalis promoters. These data strongly suggest that the MMP-9 gene was duplicated, and differentiated into two genes, one of which was specialized in a common ancestor of X. laevis and X. tropicalis to be expressed in degenerating and remodeling organs as a response to thyroid hormone during metamorphosis. [source] Expression profiles of the duplicated matrix metalloproteinase-9 genes suggest their different roles in apoptosis of larval intestinal epithelial cells during Xenopus laevis metamorphosisDEVELOPMENTAL DYNAMICS, Issue 8 2007Takashi Hasebe Abstract Matrix metalloproteinases (MMPs) play a pivotal role in development and/or pathogenesis through degrading extracellular matrix (ECM) components. We have previously shown that Xenopus MMP-9 gene is duplicated. To assess possible roles of MMP-9 and MMP-9TH in X. laevis intestinal remodeling, we here analyzed their expression profiles by in situ hybridization and show that their expression is transiently up-regulated during thyroid hormone-dependent metamorphosis. Of interest, MMP-9TH mRNA is strictly localized in the connective tissue and most highly expressed just beneath the larval epithelium that begins to undergo apoptosis. On the other hand, cells expressing MMP-9 mRNA become first detectable in the connective tissue and then, after the start of epithelial apoptosis, also in the larval epithelium. These results strongly suggest that MMP-9TH is responsible in the larval epithelial apoptosis through degrading ECM components in the basal lamina, whereas MMP-9 is involved in the removal of dying epithelial cells during amphibian intestinal remodeling. Developmental Dynamics 236:2338,2345, 2007. © 2007 Wiley-Liss, Inc. [source] AUF-1 mediates inhibition by nitric oxide of lipopolysaccharide-induced matrix metalloproteinase-9 expression in cultured astrocytesJOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2006Wenlan Liu Abstract Neuroinflammatory diseases are associated with increased production of matrix metalloproteinase-9 (MMP-9) and excessive generation of nitric oxide (NO). NO hasbeen reported to have variable effects on MMP-9 gene expression and activation in various cell types. Inthe present study, we investigated the effect of NOon MMP-9 expression in primary cortical astrocytes. Zymography and real-time PCR showed that lipopolysaccharide (LPS) dramatically increased latent MMP-9 gelatinolytic activity and MMP-9 mRNA expression. By using the NO donor DETA NONOate, we observed a dose-dependent inhibition of MMP-9 induction by LPS. Active forms of MMP-9 were not found by zymography after NO treatment. The MEK1/2 inhibitor U0126 completely inhibited LPS-induced MMP-9, which was partially inhibited by the p38 MAPK inhibitor SB203580. NO had no effect on LPS-stimulated ERK1/2 and p38 MAPK activation, suggesting that the inhibitory action of NO occurs downstream of MAPK cascades. Real-time PCR analysis showed that NO accelerated the degradation of MMP-9 mRNA after LPS induction. Western blotting and pull-down assay demonstrated that NO increased AUF-1 expression as well as its specific binding to the MMP-9 gene 3,-untranslated region. Knockdown of AUF-1 with siRNA partially reversed the inhibitory action of NO on LPS-stimulated MMP-9 induction. We conclude that NO does not activate MMP-9 in astrocyte cultures but reduces LPS-induced MMP-9 expression via accelerating MMP-9 mRNA degradation, which is partially mediated by AUF-1. Our results suggest that elevated NO concentrations may suppress MMP-9 and restrict the inflammatory response in neurodegenerative diseases. © 2006 Wiley-Liss, Inc. [source] Inhibitory effects of green tea polyphenol (,)-epigallocatechin gallate on the expression of matrix metalloproteinase-9 and on the formation of osteoclastsJOURNAL OF PERIODONTAL RESEARCH, Issue 5 2004Jeong-Ho Yun Background:, Alveolar bone resorption is a characteristic feature of periodontal diseases and involves the removal of both the mineral and organic constituents of the bone matrix, which is caused by either multinucleated osteoclast cells or matrix metalloproteinases (MMPs). The gram-negative bacterium, Porphyromonas gingivalis has been reported to stimulate the activity and expression of several groups of MMPs, whereas (,)-epigallocatechin gallate (EGCG), the main constituent of green tea polyphenols, has been reported to have inhibitory effects on the activity and expression of MMPs. Objectives:, In the present study, we investigated the effects of the green tea polyphenol, EGCG, on the gene expression of osteoblast-derived MMP-2, -9 and -13, stimulated by P. gingivalis, and on the formation of osteoclasts. Methods:, The effect of EGCG on the gene expression of MMPs was examined by treating mouse calvarial primary osteoblastic cells with EGCG (20 µm) in the presence of sonicated P. gingivalis extracts. The transcription levels of MMP-2, -9 and -13 were assessed by reverse transcription-polymerase chain reaction (RT-PCR). The effect of EGCG on osteoclast formation was confirmed by tartrate-resistant acid phosphatase (TRAP) staining in a co-culture system of mouse bone marrow cells and calvarial primary osteoblastic cells. Results:, Treatment with the sonicated P. gingivalis extracts stimulated the expression of MMP-9 mRNA and this effect was significantly reduced by EGCG, whereas the transcription levels of MMP-2 and MMP-13 were not affected by either the sonicated P. gingivalis extracts or EGCG. In addition, EGCG significantly inhibited osteoclast formation in the co-culture system at a concentration of 20 µm. Conclusions:, These findings suggest that EGCG may prevent the alveolar bone resorption that occurs in periodontal diseases by inhibiting the expression of MMP-9 in osteoblasts and the formation of osteoclasts. [source] German cockroach proteases regulate matrix metalloproteinase-9 in human bronchial epithelial cellsALLERGY, Issue 8 2006K. Page Background:, Matrix metalloproteinases (MMPs) digest extracellular matrix proteins and may play a role in the pathogenesis of bronchial asthma. MMP-9 levels are increased in the bronchoalveolar lavage fluid and sputum of asthmatics compared with that of controls. As exposure to cockroaches is an environmental risk factor for asthma, we sought to investigate the role of German cockroach fecal remnants (frass) on MMP-9 expression. Methods:, Human bronchial epithelial cells (16HBE14o-) and primary normal human bronchial epithelial cells were treated with cockroach frass in the absence or presence of tumor necrosis factor (TNF),. MMP-9 mRNA, protein levels and pro-MMP-9 activity were determined using real-time polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA) and zymogram assays. Pretreatment of frass with aprotinin abolished protease activity. PD98059, a chemical inhibitor of extracellular signal regulated kinase (ERK), and SLIGKV, an activator of protease-activated receptor (PAR)-2 were also used. AP-1DNA binding was determined by electrophoretic mobility shift assay (EMSA) and ERK phosphorylation by Western blot analysis. Results:, Cockroach frass augmented TNF, -mediated MMP-9 mRNA and protein expression by a mechanism dependent on active serine proteases within frass and not on endogenous endotoxin. Frass increased ERK phosphorylation, and chemical inhibition of ERK attenuated cockroaches' effects on MMP-9. Serine proteases are known to activate the PAR-2 receptor. We found that selective activation of PAR-2 using the peptide SLIGKV augmented TNF, -induced MMP-9 protein levels and increased ERK phosphorylation. Frass and SLIGKV each increased AP-1 translocation and DNA binding. Conclusions:, These data suggest that German cockroach frass contains active serine proteases which augment TNF, -induced MMP-9 expression by a mechanism involving PAR-2, ERK and AP-1. [source] Quantitative analysis of messenger RNA expression of matrix metalloproteinases (MMP-2 and MMP-9), tissue inhibitor-2 of matrix metalloproteinases (TIMP-2), and steroidogenic enzymes in bovine placentomes during gestation and postpartumMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 7 2007M. Takagi Abstract The relationship between the mRNA expression of proteolytic and steroidogenic enzymes in bovine placentomes was examined. Caruncle and cotyledon tissues were collected every 6 hr after spontaneous parturition until the fetal membranes were released. Based on the time of fetal membrane release after parturition, the specimens were classified as follows: (1) the early group, in which the fetal membranes were released within 6 hr after parturition; and (2) the late group, in which the fetal membranes were released 6,12 hr after parturition. The placentomes from a slaughterhouse were additionally collected as samples for the examination of enzymes during the gestation period. The mRNA expression of steroidogenic enzymes in the cotyledon was observed to be higher than that in caruncle tissues; however, the mRNA expression patterns of P450scc and StAR tended to be similar in both placental tissues. On the other hand, although the expression levels of TIMP-2 mRNA in both caruncle and cotyledon tissues were similar, during gestation and postpartum the expression levels of MMP-2 and MMP-9 mRNA were approximately 10 times higher in caruncle than in cotyledon tissue. Marked contrasting changes in mRNA expression patterns between pre- and postpartum periods were observed for MMP-2 and MMP-9 in caruncle tissues and for MMP-9 and TIMP-2 in cotyledon tissues. The present study provides the first evidence that MMP-2, MMP-9, and TIMP-2 mRNAs are expressed in bovine placentomes during the gestational and postpartum periods and suggests that these enzymes, in conjunction with steriodogenic enzymes, mediate fetal membrane detachment after parturition. Mol. Reprod. Dev. 74: 801,807, 2007. © 2006 Wiley-Liss, Inc. [source] Uveal Melanocytes Produce Matrix Metalloproteinases-2 and -9 In VitroPIGMENT CELL & MELANOMA RESEARCH, Issue 6 2004Shu-Chen Chu The purpose of the present study was to investigate the expression of matrix metalloproteinase (MMP)-2 and MMP-9 by cultured human uveal melanocytes, and to test the effects of 12- O -tetradecanoyl-phorbol-13-acetate on the expression of these MMPs. Gelatin zymography of conditioned culture medium from four cultures of human uveal melanocytes (two cultures of iridal melanocytes and two cultures of choroidal melanocytes) detected MMP-2 (72 kDa) and a relatively small amount of MMP-9 (92 kDa), both in the latent form. RT-PCR analysis revealed the MMP-2 mRNA and MMP-9 mRNA in cultured uveal melanocytes. Addition of 12- O -tetradecanoyl-phorbol-13-acetate (10 ng/ml) to the culture medium caused an increase of production of MMP-2 and MMP-9 by cultured uveal melanocytes, and also stimulated the transcription of MMP-2 and MMP-9 of these cells. [source] Inhibitory effects of epigallocatechin-3 gallate, a polyphenol in green tea, on tumor-associated endothelial cells and endothelial progenitor cellsCANCER SCIENCE, Issue 10 2009Noritaka Ohga The polyphenol epigallocatechin-3 gallate (EGCG) in green tea suppresses tumor growth by direct action on tumor cells and by inhibition of angiogenesis, but it is not known whether it specifically inhibits tumor angiogenesis. We examined the anti-angiogenic effect of EGCG on tumor-associated endothelial cells (TEC), endothelial progenitor cells (EPC), and normal endothelial cells (NEC). EGCG suppressed the migration of TEC and EPC but not NEC. EGCG also inhibited the phosphorylation of Akt in TEC but not in NEC. Furthermore, vascular endothelial growth factor-induced mobilization of EPC into circulation was inhibited by EGCG. MMP-9 in the bone marrow plasma plays key roles in EPC mobilization into circulation. We observed that expression of MMP-9 mRNA was downregulated by EGCG in mouse bone marrow stromal cells. In an in vivo model, EGCG suppressed growth of melanoma and reduced microvessel density. Our study showed that EGCG has selective anti-angiogenic effects on TEC and EPC. It is suggested that EGCG could be a promising angiogenesis inhibitor for cancer therapy. (Cancer Sci 2009; 100: 1963,1970) [source] |