Home About us Contact | |||
Mmol Mol (mmol + mol)
Selected AbstractsNitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fieldsGLOBAL CHANGE BIOLOGY, Issue 9 2006XUNHUA ZHENG Abstract Using the free-air CO2 enrichment (FACE) techniques, we carried out a 3-year mono-factorial experiment in temperate paddy rice fields of Japan (1998,2000) and a 3-year multifactorial experiment in subtropical paddy rice fields in the Yangtze River delta in China (2001,2003), to investigate the methane (CH4) emissions in response to an elevated atmospheric CO2 concentration (200±40 mmol mol,1 higher than that in the ambient atmosphere). No significant effect of the elevated CO2 upon seasonal accumulative CH4 emissions was observed in the first rice season, but significant stimulatory effects (CH4 increase ranging from 38% to 188%, with a mean of 88%) were observed in the second and third rice seasons in the fields with or without organic matter addition. The stimulatory effects of the elevated CO2 upon seasonal accumulative CH4 emissions were negatively correlated with the addition rates of decomposable organic carbon (P<0.05), but positively with the rates of nitrogen fertilizers applied in either the current rice season (P<0.05) or the whole year (P<0.01). Six mechanisms were proposed to explain collectively the observations. Soil nitrogen availability was identified as an important regulator. The effect of soil nitrogen availability on the observed relation between elevated CO2 and CH4 emission can be explained by (a) modifying the C/N ratio of the plant residues formed in the previous growing season(s); (b) changing the inhibitory effect of high C/N ratio on plant residue decomposition in the current growing season; and (c) altering the stimulatory effects of CO2 enrichment upon plant growth, as well as nitrogen uptake in the current growing season. This study implies that the concurrent enrichment of reactive nitrogen in the global ecosystems may accelerate the increase of atmospheric methane by initiating a stimulatory effect of the ongoing dramatic atmospheric CO2 enrichment upon methane emissions from nitrogen-poor paddy rice ecosystems and further amplifying the existing stimulatory effect in nitrogen-rich paddy rice ecosystems. [source] Stomatal responses to humidity and temperature in darknessPLANT CELL & ENVIRONMENT, Issue 7 2010KEITH A. MOTT ABSTRACT Stomatal responses to leaf temperature (Tl) and to the mole fractions of water vapour in the ambient air (wa) and the leaf intercellular air spaces (wi) were determined in darkness to remove the potential effects of changes in photosynthesis and intercellular CO2 concentration. Both the steady-state and kinetic responses of stomatal conductance (gs) to wa in darkness were found to be indistinguishable from those in the light. gs showed a steep response to the difference (,w) between wa and wi when wa was varied. The response was much less steep when wi was varied. Although stomatal apertures responded steeply to Tl when ,w was held constant at 17 mmol mol,1, the response was much less steep when ,w was held constant at about zero. Similar results were obtained in the light for ,w = 15 mmol mol,1 and ,w , 0 mmol mol,1. These results are discussed in the context of mechanisms for the stomatal response to humidity. [source] Lutein epoxide cycle, light harvesting and photoprotection in species of the tropical tree genus IngaPLANT CELL & ENVIRONMENT, Issue 4 2008SHIZUE MATSUBARA ABSTRACT Dynamics and possible function of the lutein epoxide (Lx) cycle, that is, the reversible conversion of Lx to lutein (L) in the light-harvesting antennae, were investigated in leaves of tropical tree species. Photosynthetic pigments were quantified in nine Inga species and species from three other genera. In Inga, Lx levels were high in shade leaves (mostly above 20 mmol mol,1 chlorophyll) and low in sun leaves. In Virola surinamensis, both sun and shade leaves exhibited very high Lx contents (about 60 mmol mol,1 chlorophyll). In Inga marginata grown under high irradiance, Lx slowly accumulated within several days upon transfer to deep shade. When shade leaves of I. marginata were briefly exposed to the sunlight, both violaxanthin and Lx were quickly de-epoxidized. Subsequently, overnight recovery occurred only for violaxanthin, not for Lx. In such leaves, containing reduced levels of Lx and increased levels of L, chlorophyll fluorescence induction showed significantly slower reduction of the photosystem II electron acceptor, QA, and faster formation as well as a higher level of non-photochemical quenching. The results indicate that slow Lx accumulation in Inga leaves may improve light harvesting under limiting light, while quick de-epoxidation of Lx to L in response to excess light may enhance photoprotection. [source] Oxygen control of ethylene biosynthesis during seed development in Arabidopsis thaliana (L.) HeynhPLANT CELL & ENVIRONMENT, Issue 6 2002K. M. Ramonell Abstract An unforeseen side-effect on plant growth in reduced oxygen is the loss of seed production at concentrations around 25% atmospheric (50 mmol mol,1 O2). In this study, the model plant Arabidopsis thaliana (L.) Heynh. cv. ,Columbia' was used to investigate the effect of low oxygen on ethylene biosynthesis during seed development. Plants were grown in a range of oxygen concentrations (210 [equal to ambient], 160, 100, 50 and 25 mmol mol,1) with 0·35 mmol mol,1 CO2 in N2. Ethylene in full-sized siliques was sampled using gas chromatography, and viable seed production was determined at maturity. Molecular analysis of ethylene biosynthesis was accomplished using cDNAs encoding 1-aminocyclopropane -1-carboxylic acid (ACC) synthase and ACC oxidase in ribonuclease protection assays and in situ hybridizations. No ethylene was detected in siliques from plants grown at 50 and 25 mmol mol,1 O2. At the same time, silique ACC oxidase mRNA increased three-fold comparing plants grown under the lowest oxygen with ambient controls, whereas ACC synthase mRNA was unaffected. As O2 decreased, tissue-specific patterning of ACC oxidase and ACC synthase gene expression shifted from the embryo to the silique wall. These data demonstrate how low O2 modulates the activity and expression of the ethylene biosynthetic pathway during seed development in Arabidopsis. [source] Atmospheric CO2 concentration does not directly affect leaf respiration in bean or poplarPLANT CELL & ENVIRONMENT, Issue 11 2001S. Jahnke Abstract It is a matter of debate if there is a direct (short-term) effect of elevated atmospheric CO2 concentration (Ca) on plant respiration in the dark. When Ca doubles, some authors found no (or only minor) changes in dark respiration, whereas most studies suggest a respiratory inhibition of 15,20%. The present study shows that the measurement artefacts , particularly leaks between leaf chamber gaskets and leaf surface, CO2 memory and leakage effects of gas exchange systems as well as the water vapour (,water dilution') effect on DCO2 measurement caused by transpiration , may result in larger errors than generally discussed. A gas exchange system that was used in three different ways , as a closed system in which Ca increased continuously from 200 to 4200 mmol (CO2) mol -1 (air) due to respiration of the enclosed leaf; as an intermittently closed system that was repeatedly closed and opened during Ca periods of either 350 or 2000 mmol mol -1, and as an open system in which Ca varied between 350 and 2000 mmol mol -1, is described. In control experiments (with an empty leaf chamber), the respective system characteristics were evaluated carefully. When all relevant system parameters were taken into account, no effects of short-term changes in CO2 on dark CO2 efflux of bean and poplar leaves were found, even when Ca increased to 4200 mmol mol -1. It is concluded that the leaf respiration of bean and poplar is not directly inhibited by elevated atmospheric CO2. [source] |