MHC Molecules (mhc + molecule)

Distribution by Scientific Domains


Selected Abstracts


Tumour cell,dendritic cell fusion for cancer immunotherapy: comparison of therapeutic efficiency of polyethylen-glycol versus electro-fusion protocols

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 3 2002
M. Lindner
Abstract Background ,Fusion of tumour cells with dendritic cells (DC) is a powerful new technology to increase tumour vaccine immunogenicity. The aim of this study was to compare fusion protocols with syngenic DCs with respect to the efficiency of polyethylen-glycol-(PEG) and electric pulse-mediated fusions for induction of protective anti-tumour immune responses. As a model we chose a low immunogenic and metastatic murine mammary carcinoma cell line, which mimics clinically relevant tumour features. Methods FACS-staining, chromium release assay, therapeutic immunization, adoptive transfer. Results ,We show that the parental line with low cell surface expression of MHC molecules as well as a lacZ transfectant becomes highly immunogenic upon fusion with DCs. This was true for PEG- as well as for electro-fused cells. Immunization with products of DCs and tumour cells cocultivated for 16 h without the fusing agent PEG also caused induction of profound anti-tumour immunity, while this was not the case when using parental tumour cells or their lacZ transfectants as vaccines. Immune protection against the parental tumour cells after vaccination with fused cells was long-lasting and could be transferred via immune spleen cells into immuno-incompetent nude (nu/nu) mice. Conclusion ,Fusion products of DA3hi mammary carcinoma cells and DCs produced by an electric pulse were similar to those produced by PEG fusion with regard to vaccine potency in prophylactic antitumour immunization assays in vivo. Therefore, both techniques seem to be promising for clinical application. [source]


Education of hyporesponsive NK cells by cytokines

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 9 2009
Kerstin Juelke
Abstract NK-cell tolerance to self is mediated via engagement of inhibitory receptors by cognate MHC molecules. This event is critical for NK-cell education to achieve functional competence. Thus, NK cells expressing self-MHC-specific inhibitory receptors are responsive to activating stimuli while those lacking such receptors are hyporesponsive. Nevertheless, the mechanisms underlying NK-cell education are still poorly understood. Here, we show that after stimulation with cytokines, hyporesponsive NK cells acquire stable expression of killer Ig-like receptors (KIR) as reflected by DNA hypomethylation of their KIR locus. Remarkably, only hyporesponsive NK cells that acquire KIR in the presence of their cognate MHC molecule gain functional competence and this process can occur in the absence of any accessory cells. Acquisition of competence does not result in autoreactivity, since acquired KIR are functional and therefore able to inhibit NK-cell cytotoxicity. Our data demonstrate that competent NK cells can be generated by cytokine stimulation, suggesting that NK-cell education might not only be an early event which takes place during NK-cell development but might also occur in the periphery during an immune response. [source]


Lipid-mediated presentation of MHC class II molecules guides thymocytes to the CD4 lineage

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2009
Satoshi Komaniwa
Abstract Previous studies on the MHC class-specific differentiation of CD4+CD8+ thymocytes into CD4+ and CD8+ T cells have focused on the role of coreceptor molecules. However, CD4 and CD8 T cells develop according to their MHC class specificities even in these mice lacking coreceptors. This study investigated the possibility that lineage is determined not only by coreceptors, but is also guided by the way how MHC molecules are presented. MHC class II molecules possess a highly conserved Cys in their transmembrane domain, which is palmitoylated and thereby associates with lipid rafts, whereas neither palmitoylation nor raft association was observed with MHC class I molecules. The generation of CD4 T cells was impaired and that of CD8 T cells was augmented when the rafts on the thymic epithelial cells were disrupted. This was due to the conversion of MHC class II-specific thymocytes from the CD4 lineage to CD8. The ability of I-Ad molecule to associate with rafts was lost when its transmembrane Cys was replaced. The development of DO11.10 thymocytes recognizing this mutant I-Adm was converted from CD4 to CD8. These results suggest that the CD4 lineage commitment is directed by the raft-associated presentation of MHC class II molecules. [source]


Intercellular MHC transfer between thymic epithelial and dendritic cells

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2008
Virginie Millet
Abstract Thymic dendritic cells (DC) and epithelial cells play a major role in central tolerance but their respective roles are still controversial. Epithelial cells have the unique ability to ectopically express peripheral tissue-restricted antigens conferring self-tolerance to tissues. Paradoxically, while negative selection seems to occur for some of these antigens, epithelial cells, contrary to DC, are poor negative selectors. Using a thymic epithelial cell line, we show the functional intercellular transfer of membrane material, including MHC molecules, occurring between epithelial cells. Using somatic and bone marrow chimeras, we show that this transfer occurs efficiently in vivo between epithelial cells and, in a polarized fashion, from epithelial to DC. This novel mode of transfer of MHC-associated, epithelial cell-derived self-antigens onto DC might participate to the process of negative selection in the thymic medulla. [source]


The impact of HLA-B micropolymorphism outside primary peptide anchor pockets on the CTL response to CMV

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2007
Jacqueline
Abstract The factors controlling epitope selection in the T cell response to persistent viruses are not fully understood, and we have examined this issue in the context of four HLA-B*35-binding peptides from the pp65 antigen of human cytomegalovirus, two of which are previously undescribed. Striking differences in the hierarchy of immunodominance between these four epitopes were observed in healthy virus carriers expressing HLA-B*3501 versus B*3508, two HLA-B allotypes that differ by a single amino acid at position 156 (HLA-B*3501, 156Leucine; HLA-B*3508, 156Arginine) that projects from the ,2 helix into the centre of the peptide-binding groove. While HLA-B*3501+ individuals responded most strongly to the 123IPSINVHHY131 and 366HPTFTSQY373 epitopes, HLA-B*3508+ individuals responded preferentially to 103CPSQEPMSIYVY114 and 188FPTKDVAL195. By comparing peptide-MHC association and disassociation rates with peptide immunogenicity, it was clear that dissociation rates correlate more closely with the hierarchy of immunodominance among the four pp65 peptides. These findings demonstrate that MHC micropolymorphism at positions outside the primary anchor residue binding pockets can have a major impact on determinant selection in antiviral T cell responses. Such influences may provide the evolutionary pressure that maintains closely related MHC molecules in diverse human populations. [source]


Assessment of CD8 involvement in T,cell clone avidity by direct measurement of HLA-A2/Mage3 complex density using a high-affinity TCR like monoclonal antibody

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2005
Karine Bernardeau
Abstract Peptide affinity for MHC molecules determines the number of MHC/peptide complexes stabilized at the cell surface in in vitro tests or in vaccination protocols. We isolated a high affinity monoclonal antibody specific for the HLA-A2/Mage3 complex that enables an equilibrium binding assay to be performed on T2 cell line loaded with a range of Mage3 peptides. Binding of Mage3 to the HLA-A2 molecule can be modeled by a standard receptor-ligand interaction characterized by an affinity constant. This model enables the measurement of the affinity of other immunogenic peptides for HLA-A2 by a competition test and the calculation of the density of complexes stabilized at the T2 cell surface for all peptide concentrations. Quantification of the HLA-A2/Mage3 complexes at target cell surfaces was used to estimate the number of complexes required to reach cytotoxicity ED50 of human T,cell clones sorted from an unprimed repertoire. We confirm with this antibody the direct relationship between clone avidity and TCR affinity, and the moderate contribution of the CD8 co-receptor in the reinforcement of TCR-MHC/peptide contact. Nevertheless, CD8 plays a critical role in the amplification of the specific signal to establish an efficient T,cell response at low specific complex densities found in physiological situations. [source]


Thymic development and repertoire selection: the rat perspective

IMMUNOLOGICAL REVIEWS, Issue 1 2001
Thomas Hünig
Summary: This review summarizes our current knowledge of T-cell maturation and repertoire selection in the rat thymus. Some unique features of early thymocyte development and of CD4/CD8 lineage decision are described. A detailed analysis of lineage progression through the CD4, CD8 "double positive" compartment and T-cell receptor-induced CD8 T-cell maturation in cell culture is provided. A second emphasis is placed on interactions between germline-encoded T-cell receptor elements with MHC molecules in thymic repertoire selection and alloreactivity [source]


Monocytes in the rat: Phenotype and function during acute allograft rejection

IMMUNOLOGICAL REVIEWS, Issue 1 2001
Birte Steiniger
Summary: Cells of the monocyte/macrophage system originate from the bone marrow, reach the organs via the blood, immigrate through post-capillary venules and further differentiate into organ-specific tissue macrophages. In rats and other species, activated monocytes/macrophages aggravate autoimmune reactions, rejection of non-vascularized allografts and chronic allograft rejection. It is very likely that they also contribute to acute allograft destruction. So far it has been impossible to distinguish the function of monocytes from that of macrophages, because cell phenotypes and their alterations upon activation are ill-defined. We have thus begun to characterize the ex vivo phenotype and function of rat monocytes in the normal state and during renal allograft rejection. Monocytes are recovered from both the central and the marginal blood pool by perfusing either the recipient's circulation or the allograft vasculature. Rat monocytes have a unique surface phenotype. During allograft rejection or after infusion of interferon-, they up-regulate class II MHC molecules, CD161 (NKR-P1A), CD62L and CD8, while CD4 and CD43 are down-modulated. Activated perfusate monocytes exert increased in vitro cytotoxicity against tumour targets, which differs from that of NK cells. We speculate that activated monocytes contribute to kidney allograft destruction by directly damaging endothelial cells or by promoting intravascular coagulation. [source]


Major histocompatibility complex class I binding predictions as a tool in epitope discovery

IMMUNOLOGY, Issue 3 2010
Claus Lundegaard
Summary Over the last decade, in silico models of the major histocompatibility complex (MHC) class I pathway have developed significantly. Before, peptide binding could only be reliably modelled for a few major human or mouse histocompatibility molecules; now, high-accuracy predictions are available for any human leucocyte antigen (HLA) -A or -B molecule with known protein sequence. Furthermore, peptide binding to MHC molecules from several non-human primates, mouse strains and other mammals can now be predicted. In this review, a number of different prediction methods are briefly explained, highlighting the most useful and historically important. Selected case stories, where these ,reverse immunology' systems have been used in actual epitope discovery, are briefly reviewed. We conclude that this new generation of epitope discovery systems has become a highly efficient tool for epitope discovery, and recommend that the less accurate prediction systems of the past be abandoned, as these are obsolete. [source]


Pathogen evasion strategies for the major histocompatibility complex class I assembly pathway

IMMUNOLOGY, Issue 1 2008
Antony N. Antoniou
Summary Major histocompatibility complex (MHC) class I molecules bind and present short antigenic peptides from endogenously or exogenously derived sources to CD8+ cytotoxic T lymphocytes (CTL), with recognition of a foreign peptide normally targeting the cell for lysis. It is generally thought that the high level of MHC polymorphism, which is concentrated mostly within the peptide-binding groove, is driven by the ,evolutionary arms race' against pathogens. Many pathogens have developed novel and intriguing mechanisms for evading the continuous sampling of the intracellular and intercellular environments by MHC molecules, none more so than viruses. The characterization of immunoevasion mechanisms has improved our understanding of MHC biology. This review will highlight our current understanding of the MHC class I biosynthetic pathway and how it has been exploited by pathogens, especially viruses, to potentially evade CTL recognition. [source]


Blood group antigens and immune responses,detailed knowledge is necessary to prevent immunization and to follow up immunized individuals

ISBT SCIENCE SERIES: THE INTERNATIONAL JOURNAL OF INTRACELLULAR TRANSPORT, Issue n1 2010
A. Husebekk
Background The immune system is educated to detect and react with foreign antigens and to tolerate self-antigen. Transfusion of blood cells and plasma and pregnancies challenge the immune system by the introduction of foreign antigens. The antigens may cause an immune response, but in many instances this is not the case and the individual is not immunised after exposure of blood group antigens. Aims The aim of the presentation is to dissect some immune responses to blood group antigens in order to understand the mechanism of immunisation. Methods The results of immune responses to blood group antigens can be detected by the presence of antibodies to the antigens. If the antibodies are of IgG class, the activated B cells have received help from antigen specific T cells. Both antibodies, B cells and T cells can be isolated from immunised individuals and studied in the laboratory. Also B-cell receptors and T-cell receptors as well as MHC molecules on antigen presenting cells can be studied and models of the immune synapses can be created in vitro. Results The most classic immune responses in transfusion medicine and in incompatible pregnancies are immune responses to the RhD antigen on red cells, HLA class I molecules on white cells and platelets and human platelet antigens. The nature of these antigens are different; RhD antigens are part of a large complex, present on red cells from RhD positive individuals and completely lacking on red cells from RhD negative individuals. It is likely that many peptides derived from this antigen complex may stimulate T cells and B cells. HLA antigens are highly polymorphic and the antigens are known to induce strong alloimmune responses. The HPA antigens are created by one amino acid difference in allotypes based on a single nucleotide polymorphism at the genetic level. HPA 1a induce immune responses in 10% of HPA 1b homozygote pregnant women. The result of these immune responses is destruction of blood cells with clinical consequences connected to the effect of transfusions or the outcome of pregnancies. Summary/Conclusions Even though there is emerging knowledge about the immune responses to some of the blood group antigens, more information must be gained in order to understand the complete picture. The action of the innate immune response initiating the adaptive immune response to blood group antigens is not well understood. A detailed understanding of both the innate ad the adaptive part of the immune response is necessary to identify individuals at risk for immunisation and to prevent immunisation to blood group antigens. [source]


Genetic approaches for the induction of a CD4+ T cell response in cancer immunotherapy

THE JOURNAL OF GENE MEDICINE, Issue 6 2005
Aude Bonehill
Abstract Recently, it has become more and more obvious that not only CD8+ cytotoxic T lymphocytes, but also CD4+ T helper cells are required for the induction of an optimal, long-lasting anti-tumor immune response. CD4+ T helper cells, and in particular IFN-,-secreting type 1 T helper cells, have been shown to fulfill a critical function in the mounting of a cancer-specific response. Consequently, targeting antigens into MHC class II molecules would greatly enhance the efficacy of an anti-cancer vaccine. The dissection of the MHC class II presentation pathway has paved the way for rational approaches to achieve this goal: novel systems have been developed to genetically manipulate the MHC class II presentation pathway. First, different genetic approaches have been used for the delivery of known epitopes into the MHC class II processing pathway or directly onto the peptide-binding groove of the MHC molecules. Second, several strategies exist for the targeting of whole tumor antigens, containing both MHC class I and class II restricted epitopes, to the MHC class II processing pathway. We review these data and describe how this knowledge is currently applied in vaccine development. Copyright © 2005 John Wiley & Sons, Ltd. [source]


CCR2 Regulates Monocyte Recruitment As Well As CD4+ Th1 Allorecognition After Lung Transplantation

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 5 2010
A. E. Gelman
Graft rejection remains a formidable problem contributing to poor outcomes after lung transplantation. Blocking chemokine pathways have yielded promising results in some organ transplant systems. Previous clinical studies have demonstrated upregulation of CCR2 ligands following lung transplantation. Moreover, lung injury is attenuated in CCR2-deficient mice in several inflammatory models. In this study, we examined the role of CCR2 in monocyte recruitment and alloimmune responses in a mouse model of vascularized orthotopic lung transplantation. The CCR2 ligand MCP-1 is upregulated in serum and allografts following lung transplantation. CCR2 is critical for the mobilization of monocytes from the bone marrow into the bloodstream and for the accumulation of CD11c+ cells within lung allografts. A portion of graft-infiltrating recipient CD11c+ cells expresses both recipient and donor MHC molecules. Two-photon imaging demonstrates that recipient CD11c+ cells are associated with recipient T cells within the graft. While recipient CCR2 deficiency does not prevent acute lung rejection and is associated with increased graft infiltration by T cells, it significantly reduces CD4+ Th1 indirect and direct allorecognition. Thus, CCR2 may be a potential target to attenuate alloimmune responses after lung transplantation. [source]


Primed CD8+ T-Cell Responses to Allogeneic Endothelial Cells Are Controlled by Local Complement Activation

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 8 2009
H. Raedler
CD8 T cells primed by transplantation recognize allogeneic class I MHC molecules expressed on graft vascular endothelium and contribute to allograft injury. We previously showed that immune cell-derived complement activation fragments are integral to T cell activation/expansion. Herein we tested the impact of local complement production/activation on T cell/endothelial cell (EC) interactions. We found that proinflammatory cytokines upregulated alternative pathway complement production by ECs, yielding C5a. We further found that ECs deficient in the cell surface C3/C5 convertase regulator decay accelerating factor (DAF, CD55) induced greater CD8 T-cell proliferation and more IFN,+ and perforin+ effector cells than wild-type (WT) ECs. Allogeneic C3,/, EC induced little or no CD8 responses. Abrogation of responses following C5a receptor (C5aR) blockade, or augmentation following addition of recombinant C5a demonstrated that the effects were mediated through T-cell-expressed-C5aR interactions. Analyses of in vivo CD8 cell responses to transplanted heart grafts deficient in EC DAF showed similar augmentation. The findings reveal that EC-derived complement triggers secondary CD8 T-cell differentiation and expansion and argue that targeting complement and/or C5aR could limit T-cell-mediated graft injury. [source]


Direct versus Indirect Allorecognition: Visualization of Dendritic Cell Distribution and Interactions During Rejection and Tolerization

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 10 2006
J. C. Ochando
Interactions of donor and recipient dendritic cells (DCs) with CD4+ T cells determine the alloantigenic response in organ transplantation, where recipient T cells respond either directly to donor MHC, or indirectly to processed donor MHC allopeptides in the context of recipient MHC molecules. The present study evaluates donor and recipient alloantigen-presenting DC trafficking and their interactions with CD4+ T cells in the lymph nodes (LNs) and the spleen under tolerogenic treatment with anti-CD2 plus anti-CD3 mAb compared with untreated rejecting conditions. CX3CR1GFP BALB/c (I-Ad) donor hearts were transplanted into C57BL/6 (I-Ab) mice and quantification of donor DC direct (GFP+ or I-Ad+) and recipient DC indirect (YAe+) trafficking and interactions with host CD4+ T cells was performed by fluorescent microscopy. Our data indicate that although both direct and indirect interactions between CD4+ T cells and donor and recipient DCs occur shortly after engraftment, only indirect presentation persists in the LN, but not the spleen, of tolerized recipients. These data suggest that distinct anatomic lymphoid compartments play a critical role in peripheral tolerance induction and maintenance, and persistent indirect presentation to CD4+ T cells within the LNs is an important process during tolerization. [source]