MHC Diversity (mhc + diversity)

Distribution by Scientific Domains


Selected Abstracts


Opposites attract: MHC-associated mate choice in a polygynous primate

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2010
J. M. SETCHELL
Abstract We investigated reproduction in a semi-free-ranging population of a polygynous primate, the mandrill, in relation to genetic relatedness and male genetic characteristics, using neutral microsatellite and major histocompatibility complex (MHC) genotyping. We compared genetic dissimilarity to the mother and genetic characteristics of the sire with all other potential sires present at the conception of each offspring (193 offspring for microsatellite genetics, 180 for MHC). The probability that a given male sired increased as pedigree relatedness with the mother decreased, and overall genetic dissimilarity and MHC dissimilarity with the mother increased. Reproductive success also increased with male microsatellite heterozygosity and MHC diversity. These effects were apparent despite the strong influence of dominance rank on male reproductive success. The closed nature of our study population is comparable to human populations for which MHC-associated mate choice has been reported, suggesting that such mate choice may be especially important in relatively isolated populations with little migration to introduce genetic variation. [source]


MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years?

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2003
L. Bernatchez
Abstract Elucidating how natural selection promotes local adaptation in interaction with migration, genetic drift and mutation is a central aim of evolutionary biology. While several conceptual and practical limitations are still restraining our ability to study these processes at the DNA level, genes of the major histocompatibility complex (MHC) offer several assets that make them unique candidates for this purpose. Yet, it is unclear what general conclusions can be drawn after 15 years of empirical research that documented MHC diversity in the wild. The general objective of this review is to complement earlier literature syntheses on this topic by focusing on MHC studies other than humans and mice. This review first revealed a strong taxonomic bias, whereby many more studies of MHC diversity in natural populations have dealt with mammals than all other vertebrate classes combined. Secondly, it confirmed that positive selection has a determinant role in shaping patterns of nucleotide diversity in MHC genes in all vertebrates studied. Yet, future tests of positive selection would greatly benefit from making better use of the increasing number of models potentially offering more statistical rigour and higher resolution in detecting the effect and form of selection. Thirdly, studies that compared patterns of MHC diversity within and among natural populations with neutral expectations have reported higher population differentiation at MHC than expected either under neutrality or simple models of balancing selection. Fourthly, several studies showed that MHC-dependent mate preference and kin recognition may provide selective factors maintaining polymorphism in wild outbred populations. However, they also showed that such reproductive mechanisms are complex and context-based. Fifthly, several studies provided evidence that MHC may significantly influence fitness, either by affecting reproductive success or progeny survival to pathogens infections. Overall, the evidence is compelling that the MHC currently represents the best system available in vertebrates to investigate how natural selection can promote local adaptation at the gene level despite the counteracting actions of migration and genetic drift. We conclude this review by proposing several directions where future research is needed. [source]


Disentangling the role of MHC-dependent ,good genes' and ,compatible genes' in mate-choice decisions of three-spined sticklebacks Gasterosteus aculeatus under semi-natural conditions

JOURNAL OF FISH BIOLOGY, Issue 8 2009
T. L. Lenz
To investigate and disentangle the role of major histocompatibility complex (MHC)-based ,good genes' and ,compatible genes' in mate choice, three-spined sticklebacks Gasterosteus aculeatus with specific MHC IIB genotypes were allowed to reproduce in an outdoor enclosure system. Here, fish were protected from predators but encountered their natural parasites. Mate choice for an intermediate genetic distance between parental MHC genotypes was observed, which would result in intermediate diversity in the offspring, but no mate choice based on good genes was found under the current semi-natural conditions. Investigation of immunological variables revealed that the less-specific innate immune system was more active in individuals with a genetically more divergent MHC allele repertoire. This suggests the need to compensate for an MHC-diminished T-cell repertoire and potentially explains the observed mate choice for intermediate MHC genetic distance. The present findings support a general pattern of mate choice for intermediate MHC diversity (i.e. compatible genes). In addition, the potentially dynamic role of MHC good genes in mate choice under different parasite pressures is discussed in the light of present and previous results. [source]


Spatio-temporal variation in the strength and mode of selection acting on major histocompatibility complex diversity in water vole (Arvicola terrestris) metapopulations

MOLECULAR ECOLOGY, Issue 1 2009
MATTHEW K. OLIVER
Abstract Patterns of spatio-temporal genetic variation at a class II major histocompatibility complex (MHC) locus and multiple microsatellite loci were analysed within and between three water vole metapopulations in Scotland, UK. Comparisons of MHC and microsatellite spatial genetic differentiation, based on standardised tests between two demographically asynchronous zones within a metapopulation, suggested that spatial MHC variation was affected by balancing selection, directional selection and random genetic drift, but that the relative effects of these microevolutionary forces vary temporally. At the metapopulation level, between-year differentiation for MHC loci was significantly correlated with that of microsatellites, signifying that neutral factors such as migration and drift were primarily responsible for overall temporal genetic change at the metapopulation scale. Between metapopulations, patterns of genetic differentiation implied that, at large spatial scales, MHC variation was primarily affected by directional selection and drift. Levels of MHC heterozygosity in excess of Hardy,Weinberg expectations were consistent with overdominant balancing selection operating on MHC variation within metapopulations. However, this effect was not constant among all samples, indicating temporal variation in the strength of selection relative to other factors. The results highlight the benefit of contrasting variation at MHC with neutral markers to separate the effects of stochastic and deterministic microevolutionary forces, and add to a growing body of evidence showing that the mode and relative strength of selection acting on MHC diversity varies both spatially and temporally. [source]


MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis)

MOLECULAR ECOLOGY, Issue 7 2005
Y. MEYER-LUCHT
Abstract In vertebrates, the genes of the major histocompatibility complex (MHC) are among the most debated candidates accounting for co-evolutionary processes of host,parasite interaction at the molecular level. The exceptionally high allelic polymorphism found in MHC loci is believed to be maintained by pathogen-driven selection, mediated either through heterozygous advantage or rare allele advantage (= frequency dependent selection). While investigations under natural conditions are still very rare, studies on humans or mice under laboratory conditions revealed support for both hypotheses. We investigated nematode burden and allelic diversity of a functional important MHC class II gene (DRB exon2) in free-ranging yellow-necked mice (Apodemus flavicollis). Twenty-seven distinct Apfl -DRB alleles were detected in 146 individuals with high levels of amino acid sequence divergence, especially at the antigen binding sites (ABS), indicating selection processes acting on this locus. Heterozygosity had no influence on the infection status (being infected or not), the number of different nematode infections (NNI) or the intensity of infection, measured as the individual faecal egg count (FEC). However, significant associations of specific Apfl -DRB alleles to both nematode susceptibility and resistance were found, for all nematodes as well as in separate analyses of the two most common nematodes. Apodemus flavicollis individuals carrying the alleles Apfl -DRB*5 or Apfl -DRB*15 revealed significantly higher FEC than individuals with other alleles. In contrast, the allele Apfl -DRB*23 showed a significant association to low FEC of the most common nematode. Thus, our results provide evidence for pathogen-driven selection acting through rare allele advantage under natural conditions. [source]


Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae)

MOLECULAR ECOLOGY, Issue 12 2004
HILARY C. MILLER
Abstract The Chatham Island black robin, Petroica traversi, is a highly inbred, endangered passerine with extremely low levels of variation at hypervariable neutral DNA markers. In this study we investigated variation in major histocompatibility complex (MHC) class II genes in both the black robin and its nonendangered relative, the South Island robin Petroica australis australis. Previous studies have shown that Petroica have at least four expressed class II B MHC genes. In this study, the sequences of introns flanking exon 2 of these loci were characterized to design primers for peptide-binding region (PBR) sequence analysis. Intron sequences were comprised of varying numbers of repeated units, with highly conserved regions immediately flanking exon 2. Polymerase chain reaction primers designed to this region amplified three or four sequences per black robin individual, and eight to 14 sequences per South Island robin individual. MHC genes are fitness-related genes thought to be under balancing selection, so they may be more likely to retain variation in bottlenecked populations. To test this, we compared MHC variation in the black robin with artificially bottlenecked populations of South Island robin, and with their respective source populations, using restriction fragment length polymorphism analyses and DNA sequencing of the PBR. Our results indicate that the black robin is monomorphic at class II B MHC loci, while both source and bottlenecked populations of South Island robin have retained moderate levels of variation. Comparison of MHC variation with minisatellite DNA variation indicates that genetic drift outweighs balancing selection in determining MHC diversity in the bottlenecked populations. However, balancing selection appears to influence MHC diversity over evolutionary timescales, and the effects of gene conversion are evident. [source]