MHC Class II Molecules (mhc + class_ii_molecule)

Distribution by Scientific Domains


Selected Abstracts


An analysis of variability in the manufacturing of dexosomes: Implications for development of an autologous therapy,

BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2005
Sanjay Patel
Abstract Dexosomes are nanometer-size vesicles released by dendritic-cells, possessing much of the cellular machinery required to stimulate an immune response (i.e. MHC Class I and II). The ability of patient-derived dexosomes loaded with tumor antigens to elicit anti-tumor activity is currently being evaluated in clinical trials. Unlike conventional biologics, where variability between lots of product arises mostly from the manufacturing process, an autologous product has inherent variability in the starting material due to heterogeneity in the human population. In an effort to assess the variability arising from the dexosome manufacturing process versus the human starting material, 144 dexosome preparations from normal donors (111) and cancer patients (33) from two Phase I clinical trials were analyzed. A large variability in the quantity of dexosomes (measured as the number of MHC Class II molecules) produced between individual lots was observed (,>,50-fold). An analysis of intra-lot variability shows that the manufacturing process introduces relatively little of this variability. To identify the source(s) of variability arising from the human starting material, distributions of the key parameters involved in dexosome production were established, and a model created. Computer simulations using this model were performed, and compared to the actual data observed. The main conclusion from these simulations is that the number of cells collected per individual and the productivity of these cells of are the principal sources of variability in the production of Class II. The approach described here can be extended to other autologous therapies in general to evaluate control of manufacturing processes. Moreover, this analysis of process variability is directly applicable to production at a commercial scale, since the large scale manufacture of autologous products entails an exact process replication rather than scale-up in volume, as is the case with traditional drugs or biologics. © 2005 Wiley Periodicals, Inc. [source]


Processing and presentation of (pro)-insulin in the MHC class II pathway: the generation of antigen-based immunomodulators in the context of type 1 diabetes mellitus

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 4 2010
Timo Burster
Abstract Both CD4+ and CD8+ T lymphocytes play a crucial role in the autoimmune process leading to T1D. Dendritic cells take up foreign antigens and autoantigens; within their endocytic compartments, proteases degrade exogenous antigens for subsequent presentation to CD4+ T cells via MHC class II molecules. A detailed understanding of autoantigen processing and the identification of autoantigenic T cell epitopes are crucial for the development of antigen-based specific immunomodulators. APL are peptide analogues of auto-immunodominant T cell epitopes that bind to MHC class II molecules and can mediate T cell activation. However, APL can be rapidly degraded by proteases occurring in the extracellular space and inside cells, substantially weakening their efficiency. By contrast, protease-resistant APL function as specific immunomodulators and can be used at low doses to examine the functional plasticity of T cells and to potentially interfere with autoimmune responses. Here, we review the latest achievements in (pro)-insulin processing in the MHC class II pathway and the generation of APL to mitigate autoreactive T cells and to activate Treg cells. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Lipid-mediated presentation of MHC class II molecules guides thymocytes to the CD4 lineage

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2009
Satoshi Komaniwa
Abstract Previous studies on the MHC class-specific differentiation of CD4+CD8+ thymocytes into CD4+ and CD8+ T cells have focused on the role of coreceptor molecules. However, CD4 and CD8 T cells develop according to their MHC class specificities even in these mice lacking coreceptors. This study investigated the possibility that lineage is determined not only by coreceptors, but is also guided by the way how MHC molecules are presented. MHC class II molecules possess a highly conserved Cys in their transmembrane domain, which is palmitoylated and thereby associates with lipid rafts, whereas neither palmitoylation nor raft association was observed with MHC class I molecules. The generation of CD4 T cells was impaired and that of CD8 T cells was augmented when the rafts on the thymic epithelial cells were disrupted. This was due to the conversion of MHC class II-specific thymocytes from the CD4 lineage to CD8. The ability of I-Ad molecule to associate with rafts was lost when its transmembrane Cys was replaced. The development of DO11.10 thymocytes recognizing this mutant I-Adm was converted from CD4 to CD8. These results suggest that the CD4 lineage commitment is directed by the raft-associated presentation of MHC class II molecules. [source]


Extensive HLA class I allele promiscuity among viral CTL epitopes

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 9 2007
Nicole Frahm
Abstract Promiscuous binding of T helper epitopes to MHC class II molecules has been well established, but few examples of promiscuous class I-restricted epitopes exist. To address the extent of promiscuity of HLA class I peptides, responses to 242 well-defined viral epitopes were tested in 100 subjects regardless of the individuals' HLA type. Surprisingly, half of all detected responses were seen in the absence of the originally reported restricting HLA class I allele, and only 3% of epitopes were recognized exclusively in the presence of their original allele. Functional assays confirmed the frequent recognition of HLA class I-restricted T cell epitopes on several alternative alleles across HLA class I supertypes and encoded on different class I loci. These data have significant implications for the understanding of MHC class I-restricted antigen presentation and vaccine development. [source]


N-terminal destruction signals lead to rapid degradation of the major histocompatibility complex class II transactivator CIITA

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 8 2003
Felix Schnappauf
Abstract Major histocompatibility complex (MHC) class II molecules play an essential role for the cellular immune response by presenting peptide antigens to CD4+ T cells. MHC class II molecules and genes show a highly complex expression pattern, which is orchestrated through a master regulatory factor, called CIITA (class II transactivator). CIITA controls MHC class II expression not only qualitatively, but also quantitatively, and has therefore a direct influence on the CD4 T cell-dependent immune response. CIITA is itself tightly regulated not only on the transcriptional level, but as we show here also on the protein level. CIITA is subjected to a very rapid protein turnover and shows a half-life of about 30,min. Inhibition of degradation by proteasome inhibitors and the identification of ubiquitylated CIITA intermediates indicate that the degradation of CIITA is mediated by the ubiquitin-proteasome system. We identified two regions mediating degradation within the N-terminal domain of CIITA. N-terminal fusions or deletions stabilized CIITA, indicating that the N termini contribute to degradation. Several non-functional CIITA mutants are partially stabilized, but we provide evidence that transcriptional activity of CIITA is not directly linked to degradation. [source]


Major histocompatibility complex class II, fetal skin dendritic cells are potent accessory cells of polyclonal T-cell responses

IMMUNOLOGY, Issue 2 2000
A. Elbe-Bürger
Summary Whereas dendritic cells (DC) and Langerhans cells (LC) isolated from organs of adult individuals express surface major histocompatibility complex (MHC) class II antigens, DC lines generated from fetal murine skin, while capable of activating naive, allogeneic CD8+ T cells in a MHC class I-restricted fashion, do not exhibit anti-MHC class II surface reactivity and fail to stimulate the proliferation of naive, allogeneic CD4+ T cells. To test whether the CD45+ MHC class I+ CD80+ DC line 80/1 expresses incompetent, or fails to transcribe, MHC class II molecules, we performed biochemical and molecular studies using Western blot and polymerase chain reaction analysis. We found that 80/1 DC express MHC class II molecules neither at the protein nor at the transcriptional level. Ultrastructural examination of these cells revealed the presence of a LC-like morphology with indented nuclei, active cytoplasm, intermediate filaments and dendritic processes. In contrast to adult LC, no LC-specific cytoplasmic organelles (Birbeck granules) were present. Functionally, 80/1 DC in the presence, but not in the absence, of concanavalin A and anti-T-cell receptor monoclonal antibodies stimulated a vigorous proliferative response of naive CD4+ and CD8+ T cells. Furthermore, we found that the anti-CD3-induced stimulation of naive CD4+ and CD8+ T cells was critically dependent on the expression of Fc,R on 80/1 DC and that the requirement for co-stimulation depends on the intensity of T-cell receptor signalling. [source]


Diversification in MHC class II invariant chain-like proteins among fishes

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 4 2004
M. Sakai
Summary The major histocompatibility complex (MHC) class II invariant chains are important for an efficient and complete presentation of antigens by MHC class II molecules. Invariant chain-like proteins (Iclp) 1 and 2 were identified by expressed sequence tag analysis from cDNA library of common carp head kidney (HK) stimulated with concanavalin A and lipopolysaccharide. The sequences were 1043 and 1016 bp in length encoding 234 and 198 amino acid proteins, respectively. Based on their predicted structure, the genes harboured transmembrane domain (TMD) and Tg (thyroglobulin) type 1 domains. Expression analysis revealed that both genes were expressed in normal tissues of HK, intestine, brain and gill. By database search, similar homologues were found in Atlantic salmon, fugu and catfish. Phylogenetic and alignment analysis indicate diversity among fish Iclps. [source]


Rationally designed mutations convert complexes of human recombinant T cell receptor ligands into monomers that retain biological activity

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 1 2005
Jianya Y Huan
Abstract Single-chain human recombinant T cell receptor ligands derived from the peptide binding/TCR recognition domain of human HLA-DR2b (DRA*0101/DRB1*1501) produced in Escherichia coli with and without amino-terminal extensions containing antigenic peptides have been described previously. While molecules with the native sequence retained biological activity, they formed higher order aggregates in solution. In this study, we used site-directed mutagenesis to modify the ,-sheet platform of the DR2-derived RTLs, obtaining two variants that were monomeric in solution by replacing hydrophobic residues with polar (serine) or charged (aspartic acid) residues. Size exclusion chromatography and dynamic light scattering demonstrated that the modified RTLs were monomeric in solution, and structural characterization using circular dichroism demonstrated the highly ordered secondary structure of the RTLs. Peptide binding to the ,empty' RTLs was quantified using biotinylated peptides, and functional studies showed that the modified RTLs containing covalently tethered peptides were able to inhibit antigen-specific T cell proliferation in vitro, as well as suppress experimental autoimmune encephalomyelitis in vivo. These studies demonstrated that RTLs encoding the Ag-binding/TCR recognition domain of MHC class II molecules are innately very robust structures, capable of retaining potent biological activity separate from the Ig-fold domains of the progenitor class II structure, with prevention of aggregation accomplished by modification of an exposed surface that was buried in the progenitor structure. Copyright © 2004 Society of Chemical Industry [source]


Structural features of a zinc binding site in the superantigen strepococcal pyrogenic exotoxin A (SpeA1): Implications for MHC class II recognition

PROTEIN SCIENCE, Issue 6 2001
Matthew Baker
Abstract Streptococcal pyrogenic exotoxin A (SpeA) is produced by Streptococcus pyogenes, and has been associated with severe infections such as scarlet fever and Streptococcal Toxic Shock Syndrome (STSS). In this study, the crystal structure of SpeA1 (the product of speA allele 1) in the presence of 2.5 mM zinc was determined at 2.8 Å resolution. The protein crystallizes in the orthorhombic space group P21212, with four molecules in the crystallographic asymmetric unit. The final structure has a crystallographic R -factor of 21.4% for 7,031 protein atoms, 143 water molecules, and 4 zinc atoms (one zinc atom per molecule). Four protein ligands,Glu 33, Asp 77, His 106, and His 110,form a zinc binding site that is similar to the one observed in a related superantigen, staphylococcoal enterotoxin C2. Mutant toxin forms substituting Ala for each of the zinc binding residues were generated. The affinity of these mutants for zinc ion confirms the composition of this metal binding site. The implications of zinc binding to SpeA1 for MHC class II recognition are explored using a molecular modeling approach. The results indicate that, despite their common overall architecture, superantigens appear to have multiple ways of complex formation with MHC class II molecules. [source]


Genetic approaches for the induction of a CD4+ T cell response in cancer immunotherapy

THE JOURNAL OF GENE MEDICINE, Issue 6 2005
Aude Bonehill
Abstract Recently, it has become more and more obvious that not only CD8+ cytotoxic T lymphocytes, but also CD4+ T helper cells are required for the induction of an optimal, long-lasting anti-tumor immune response. CD4+ T helper cells, and in particular IFN-,-secreting type 1 T helper cells, have been shown to fulfill a critical function in the mounting of a cancer-specific response. Consequently, targeting antigens into MHC class II molecules would greatly enhance the efficacy of an anti-cancer vaccine. The dissection of the MHC class II presentation pathway has paved the way for rational approaches to achieve this goal: novel systems have been developed to genetically manipulate the MHC class II presentation pathway. First, different genetic approaches have been used for the delivery of known epitopes into the MHC class II processing pathway or directly onto the peptide-binding groove of the MHC molecules. Second, several strategies exist for the targeting of whole tumor antigens, containing both MHC class I and class II restricted epitopes, to the MHC class II processing pathway. We review these data and describe how this knowledge is currently applied in vaccine development. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Anti-CD28 Antibody-Induced Kidney Allograft Tolerance Related to Tryptophan Degradation and TCR, Class II, B7+ Regulatory Cells

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 10 2005
Fabienne Haspot
B7/CTLA-4 interactions negatively regulate T-cell responses and are necessary for transplant tolerance induction. Tolerance induction may therefore be facilitated by selectively inhibiting the B7/CD28 pathway without blocking that of B7/CTLA-4. In this study, we selectively inhibited CD28/B7 interactions using a monoclonal antibody modulating CD28 in a rat model of acute kidney graft rejection. A short-term treatment abrogated both acute and chronic rejection. Tolerant recipients presented few alloantibodies against donor MHC class II molecules, whereas untreated rejecting controls developed anti-MHC class I and II alloantibodies. PBMC from tolerant animals were unable to proliferate against donor cells but could proliferate against third-party cells. The depletion of B7+, non-T cells fully restored this reactivity whereas purified T cells were fully reactive. Also, NK cells depletion restored PBMC reactivity in 60% of tolerant recipients. Conversely, NK cells from tolerant recipients dose-dependently inhibited alloreactivity. PBMC anti-donor reactivity could be partially restored in vitro by blocking indoleamine-2,3-dioxygenase (IDO) and iNOS. In vivo, pharmacologic inhibition of these enzymes led to the rejection of the otherwise tolerated transplants. This study demonstrates that an initial selective blockade of CD28 generates B7+ non-T regulatory cells and a kidney transplant tolerance sustained by the activity of IDO and iNOS. [source]


Down-regulation of CXCR1 and CXCR2 expression on human neutrophils upon activation of whole blood by S. aureus is mediated by TNF-,

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2001
I. Tikhonov
It was suggested that bacterial products can inhibit the expression of leucocyte chemokine receptors during sepsis and affect leucocyte functions in septic syndrome. Superantigens and toxins produced by Staphylococcus aureus are capable of activating leucocytes via binding to MHC-II antigens on monocytes and T-cell receptor molecules on T lymphocytes. It was recently shown that staphylococcal enterotoxins directly down-regulate the expression of CC chemokine receptors on monocytes through binding to MHC class II molecules. We studied the effects of killed S. aureus on the expression of interleukin-8 receptors, CXCR1 and CXCR2, on polymorphonuclear leucocytes (PMN), which are known to lack the expression of MHC-II antigens. It was shown that S. aureus down-regulated the cell-surface expression of CXCR1 and CXCR2 on PMN in the whole blood and total blood leucocyte fraction containing PMN and monocytes, but did not modulate IL-8 receptor expression in purified PMN suspension. Antibody to TNF-, abrogated down-regulation of IL-8 receptors induced by S. aureus. In contrast, LPS reduced CXCR1 and CXCR2 expression in purified PMN and whole blood in a TNF-,-independent manner. We further showed that TNF-,-induced decrease of CXCR1 and CXCR2 expression was associated with lower IL-8 binding and lower CXCR1 and CXCR2 mRNA levels, and was abrogated by protease inhibitors. We suggest that during septicemia, S. aureus may inhibit neutrophil responsiveness to IL-8 and other CXC chemokines via TNF-,- mediated down-regulation of CXCR1 and CXCR2. [source]