MGMT Gene (mgmt + gene)

Distribution by Scientific Domains


Selected Abstracts


Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumors

INTERNATIONAL JOURNAL OF CANCER, Issue 3 2005
Maria Möllemann
Abstract Allelic losses on the chromosome arms 1p and 19q have been associated with favorable response to chemotherapy and good prognosis in anaplastic oligodendroglioma patients, but the molecular mechanisms responsible for this relationship are as yet unknown. The DNA repair enzyme O6 -methylguanine DNA methyltransferase (MGMT) may cause resistance to DNA-alkylating drugs commonly used in the treatment of anaplastic oligodendrogliomas and other malignant gliomas. We report on the analysis of 52 oligodendroglial tumors for MGMT promoter methylation, as well as mRNA and protein expression. Using sequencing of sodium bisulfite-modified DNA, we determined the methylation status of 25 CpG sites within the MGMT promoter. In 46 of 52 tumors (88%), we detected MGMT promoter hypermethylation as defined by methylation of more than 50% of the sequenced CpG sites. Real-time reverse transcription-PCR showed reduced MGMT mRNA levels relative to non-neoplastic brain tissue in the majority of tumors with hypermethylation. Similarly, immunohistochemical analysis showed either no or only small fractions of MGMT positive tumor cells. MGMT promoter hypermethylation was significantly more frequent and the percentage of methylated CpG sites in the investigated MGMT promoter fragment was significantly higher in tumors with loss of heterozygosity on chromosome arms 1p and 19q as compared to tumors without allelic losses on these chromosomes arms. Taken together, our data suggest that MGMT hypermethylation and low or absent expression are frequent in oligodendroglial tumors and likely contribute to the chemosensitivity of these tumors. [source]


Aberrant methylation and loss of expression of O6 -methylguanine-DNA methyltransferase in pulmonary squamous cell carcinoma and adenocarcinoma

PATHOLOGY INTERNATIONAL, Issue 6 2005
Osamu Furonaka
O6 -Methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein that protects cells against the carcinogenic effects of alkylating agents. The methylation status of the MGMT gene was investigated by methylation-specific polymerase chain reaction (PCR) and expression status was investigated by immunohistochemistry in 70 cases of pulmonary squamous cell carcinoma (pulmonary SqCC), including 23 cases of the central type and 47 cases of the peripheral type, and in 53 cases of the peripheral type of pulmonary adenocarcinoma (AC). The frequency of MGMT methylation was 36% in SqCC and 42% in AC. Cases with MGMT methylation correlated significantly with T factor in SqCC (P = 0.047) and AC (P = 0.03). In SqCC, the frequency of MGMT methylation was 26% in the central type and 40% in the peripheral type; a significant correlation was not found (P = 0.29). In AC with mixed subtypes showing MGMT methylation, the level of MGMT expression in the bronchioloalveolar carcinoma (BAC) area (non-invasive status) was significantly higher than that in the papillary or acinar AC area (invasive status; P = 0.0002). This trend was not found in AC with mixed subtypes showing no MGMT methylation (P = 0.10). These findings suggest that MGMT inactivation is an event that occurs in the late carcinogenic process in SqCC and AC, and that AC progress from non-invasive status to invasive status with MGMT inactivation induced by the promoter DNA methylation. [source]


Inactivation of O6 -Methylguanine-DNA Methyltransferase in Human Lung Adenocarcinoma Relates to High-grade Histology and Worse Prognosis among Smokers

CANCER SCIENCE, Issue 2 2002
Hiroyuki Hayashi
To evaluate the significance of O6 -methylguanine-DNA methyltransferase (MGMT) activity in the development of human lung adenocarcinoma (AC), we investigated promoter hypermethylation of the MGMTx gene by methylation-specific PCR, and the expression of MGMT protein by immuno-histochemistry in relation to smoking history of the patients. In total, 31 of 87 AC patients (35.5%) showed hypermethylation of the MGMT gene, and no significant difference was observed between smokers (37.3%) and non-smokers (33.3%). However, hypermethylation of the MGMT gene increased in parallel with lesser differentiation grade of tumors among smokers (well, 16.7%; moderately, 42.1%; poorly, 57.1%; P=0.022), although this trend was not observed among non-smokers. Almost all the tumors with promoter hypermethylation of the MGMT gene showed consistently negative MGMT staining by immunohistochemistry. When the prognosis of stage-I patients was compared among smokers, it was apparent that the prognosis of patients with inactivated MGMT was worse than that of MGMT-positive patients (P=0.036). Such differences in the prognoses were not observed among non-smokers. In conclusion, MGMT inactivation is related to the differentiation grade and the prognosis of lung AC patients among smokers. Although further studies are required, we speculate that smoking may induce hypermethylation, not only of the MGMT gene, but also of other important tumor suppressor genes. [source]


Protection against Malignant Progression of Spontaneously Developing Liver Tumors in Transgenic Mice Expressing O6 -Methylguanine-DNA Methyltransferase

CANCER SCIENCE, Issue 11 2000
Xiusheng Qin
To study the effect of O6 -methylguanine-DNA methyltransferase (MGMT) on carcinogenesis, we have previously generated MGMT transgenic mice overexpressing the bacterial MGMT gene, ada, and demonstrated that high MGMT levels in the liver suppress induction of liver tumors after treatment with an alkylating hepatocarcinogen. To examine the effects of life-long elevation of MGMT activity on mouse spontaneous liver tumor development, ada-transgenic and control nontransgenic mice were compared. We also examined mutations at codon 61 of the H-ras oncogene, reported as a hot spot in mouse liver tumors, using a direct DNA sequencing method. The results revealed no significant difference in tumor incidence or mutation spectrum, but interestingly, ada-transgenic mice were found to have fewer malignant tumors and survived longer, indicating a possible protective role of MGMT against malignant conversion. [source]


A bicistronic SIN-lentiviral vector containing G156A MGMT allows selection and metabolic correction of hematopoietic protoporphyric cell lines

THE JOURNAL OF GENE MEDICINE, Issue 9 2003
Emmanuel Richard
Abstract Background Erythropoietic protoporphyria (EPP) is an inherited disease characterised by a ferrochelatase (FECH) deficiency, the latest enzyme of the heme biosynthetic pathway, leading to the accumulation of toxic protoporphyrin in the liver, bone marrow and spleen. We have previously shown that a successful gene therapy of a murine model of the disease was possible with lentiviral vectors even in the absence of preselection of corrected cells, but lethal irradiation of the recipient was necessary to obtain an efficient bone marrow engraftment. To overcome a preconditioning regimen, a selective growth advantage has to be conferred to the corrected cells. Methods We have developed a novel bicistronic lentiviral vector that contains the human alkylating drug resistance mutant O6 -methylguanine DNA methyltransferase (MGMT G156A) and FECH cDNAs. We tested their capacity to protect hematopoietic cell lines efficiently from alkylating drug toxicity and correct enzymatic deficiency. Results EPP lymphoblastoid (LB) cell lines, K562 and cord-blood-derived CD34+ cells were transduced at a low multiplicity of infection (MOI) with the bicistronic constructs. Resistance to O6 -benzylguanine (BG)/N,N,-bis(2-chloroethyl)- N -nitrosourea (BCNU) was clearly shown in transduced cells, leading to the survival and expansion of provirus-containing cells. Corrected EPP LB cells were selectively amplified, leading to complete restoration of enzymatic activity and the absence of protoporphyrin accumulation. Conclusions This study demonstrates that a lentiviral vector including therapeutic and G156A MGMT genes followed by BG/BCNU exposure can lead to a full metabolic correction of deficient cells. This vector might form the basis of new EPP mouse gene therapy protocols without a preconditioning regimen followed by in vivo selection of corrected hematopoietic stem cells. Copyright © 2003 John Wiley & Sons, Ltd. [source]