Mg/ Kg (mg/ + kg)

Distribution by Scientific Domains


Selected Abstracts


Organic carbon biostimulates rapid rhizodegradation of perchlorate

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2008
Dawit D. Yifru
Abstract Previous hydroponics and field studies identified phytodegradation and rhizodegradation as the two main mechanisms by which plants metabolize perchlorate. Plant uptake and phytodegradation of perchlorate is a slower and undesired process that poses ecological risks resulting from phytoaccumulation of some fraction of the perchlorate. Meanwhile, rhizodegradation is a more rapid and favored process involving perchlorate-degrading bacteria utilizing dissolved organic carbon (DOC) as a carbon and energy (electron) source to rapidly degrade perchlorate to innocuous chloride. In the present study, rhizodegradation of perchlorate by willow trees (Salix nigra) was biostimulated using electron sources obtained from natural and artificial carbon sources. In bioreactors provided with carbon sources as 500 mg/L DOC, 25 to 40 mg/L of initial perchlorate concentrations were removed to below the ion chromatography method detection limit of 2 ,g/L in approximately 9 d. For planted controls provided with no electron donors, the time required for the complete removal of the same doses of perchlorate was up to 70 d. Enhancement of rhizodegradation by organic carbon reduced the phytoaccumulated fraction of perchlorate by an order of magnitude from approximately 430 to 20 mg/ kg. The implication of the present study is that the high fraction uptake and phytoaccumulation of perchlorate in agricultural products and the recycling of perchlorate into the ecosystem can be significantly curtailed by supplying electron donors derived from organic carbon sources to the root zone of plants. [source]


Effects of Fungal Phytase on Utilization of Dietary Protein and Minerals, and Dephosphorylation of Phytic Acid in the Alimentary Tract of Channel Catfish Ictalurus punctatus Fed an All-Plant-Protein Diet

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 1 2002
Weibing Yan
A feeding trial was conducted to quantify the effects of phytase at levels of 0, 500, 1,000, 2,000, 4,000, and 8,000 units (U) per kg diet on utilization of dietary protein and minerals by fingerling (12 g) channel catfish Ictalurus punctatus fed an all-plant-protein diet composed of soybean meal, corn, and wheat middlings. The effects of phytase on dephosphorylation of phytic acid (phytate) in the alimentary tract of catfish also were determined. After 14 wk, mean weight gains (30.2,43.9 g/fish), feed conversion ratios (2.27,2.40 g feed consumed/g weight gain), protein efficiency ratios (1.47,1.61 g weight gaid/g protein consumed), and dietary protein retentions (23.8,26.7%) did not differ significantly (P > 0.05) among treatment groups. A digestibility trial conducted after the feeding trial showed no difference (P > 0.05) in mean digestibility of diet dry matter (49.0,58.3%) or crude protein (85.4-88.5%) among treatment groups. Concentrations of ash (46.7,48.6%), calcium (Ca, 17.9,18.5%), phosphorus (P, 9.1,9.5%), and manganese (Mn, 65.5,74.1 mg/kg) were significantly higher (P , 0.05) in bone of fish fed , 500 U/kg than in bone of fish fed 0 U/kg (ash, 43.5%; Ca, 16.4%; P, 8.4%; and Mn, 49.0 ma/kg), but concentrations of these minerals did not differ (P > 0.05) in bone of fish fed , 500 Uk/g. The magnesium (Mg) content of bone did not differ (P > 0.05) between fish fed 0 U/kg (0.29%) or 500 U/kg (0.34%), but was significantly lower in fish fed 0 U/kg than in fish fed , 1,000 U/kg (0.35,37%). Bone Mg levels did not differ (P > 0.05) among fish fed , 500 U/kg. The amount of zinc (Zn) in bone of fish fed 8,000 U/kg (153.3 mg/kg) was significantly higher than that in fish fed 0 U/kg (115.7 mg/kg) or 500 U/kg (130.3 mg/ kg), but did not differ from Zn levels in bone of fish fed 1,000,4,000 U/kg (134.5,135.8 mg/ kg). Dephosphorylation of phytate occurred primarily in the stomach within 2,8 h after diet ingestion, depending on the level of phytase supplementation. Initial levels of total phytate in the diet decreased 32,94% in stomach contents of fish fed l,000,8,000 U/kg within 2 h after feeding. Eight hours after feeding, stomach contents of fish fed , 1,000 U/kg contained less than 6% of initial total dietary phytate. Stomach contents of fish fed 500 U/kg retained 92% of initial total dietary phytate 2 h after feeding and 15% of total dietary phytate 8 h after feeding. Results of this study indicate that phytase supplementation at levels up to 8,000 U/kg diet did not increase weight gain or improve dietary protein utilization of channel catfish fed an all-plant-protein diet. Addition of phytase at a level of 1,000 U/kg diet was sufficient to significantly increase the Ca, P, Mg, and Mn content of bone, relative to fish fed an unsupplemented diet, and significantly decrease the quantity of total phytate in feces. A phytase level of 8,000 U/kg diet significantly increased the bioavailability of naturally occurring Zn in feed ingredients and increased the rate of phytate dephosphorylation in the stomach, compared with a diet containing no added phytase. Increased utilization of naturally occurring minerals in feed ingredients reduces the need for mineral supplements in diets and results in decreased elimination of minerals in feces. Thus, use of phytase in catfish feeds can be expected to provide both economic and environmental benefits. [source]


Effect of polyphenols extracted from Tamarind (Tamarindus indica L.) seed coat on physiological changes, heterophil/lymphocyte ratio, oxidative stress and body weight of broilers (Gallus domesticus) under chronic heat stress

ANIMAL SCIENCE JOURNAL, Issue 2 2010
Worapol AENGWANICH
ABSTRACT The aim of this experiment was to determine the effect of polyphenols extracted from tamarind (Tamarindus indica L.) seed coat on physiological changes, oxidative stress and production of male broilers maintained at high environmental temperatures. The results found that body temperature and respiratory rate of broilers maintained at 38 ± 2°C was higher than broilers maintained at 26 ± 2°C (P < 0.05). On day 1, the heterophil/ lymphocyte ratio of broilers maintained at 38 ± 2°C and received polyphenols at 300 and 400 mg/kg in diets was lower than broilers that received polyphenols at 0 and 200 mg/kg in diets (P < 0.05). At week 1, the malondialdehyde of the broilers maintained at 38 ± 2°C who received polyphenols at 400 mg/ kg in their diet was lower than broilers that received polyphenols at 100 and 200 mg/kg in diets (P < 0.05). At week 1, the body weights of broilers that were maintained at 38 ± 2°C who received polyphenols at 100,500 mg/ kg in diets, and broilers maintained at 26 ± 2°C were higher than that of the control group which had not been treated with a polyphenol diet (P < 0.05). This study indicated that polyphenols could reduce heat stress, oxidative stress and improve the growth rate of heat-stressed broilers. [source]