MDA Production (mda + production)

Distribution by Scientific Domains


Selected Abstracts


DROUGHT STRESS: Comparative Time Course Action of the Foliar Applied Glycinebetaine, Salicylic Acid, Nitrous Oxide, Brassinosteroids and Spermine in Improving Drought Resistance of Rice

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 5 2010
M. Farooq
Abstract Worldwide rice productivity is being threatened by increased endeavours of drought stress. Among the visible symptoms of drought stress, hampered water relations and disrupted cellular membrane functions are the most important. Exogenous use of polyamines (PAs), salicylic acid (SA), brassinosteroids (BRs), glycinebetaine (GB) and nitrous oxide (NO) can induce abiotic stresses tolerance in many crops. In this time course study, we appraised the comparative role of all these substances to improve the drought tolerance in rice (Oryza sativa L.) cultivar Super-Basmati. Plants were subjected to drought stress at four leaf stage (4 weeks after emergence) by maintaining soil moisture at 50 % of field capacity. Pre-optimized concentrations of GB (150 mg l,1), SA (100 mg l,1), NO (100 ,mol l,1 sodium nitroprusside as NO donor), BR (0.01 ,m 24-epibrassinolide) and spermine (Spm; 10 ,m) were foliar sprayed at five-leaf stage (5 weeks after emergence). There were two controls both receiving no foliar spray, viz. well watered (CK1) and drought stressed (CK2). There was substantial reduction in allometric response of rice, gas exchange and water relation attributes by drought stress. While drought stress enhanced the H2O2, malondialdehyde (MDA) and relative membrane permeability, foliar spray of all the chemicals improved growth possibly because of the improved carbon assimilation, enhanced synthesis of metabolites and maintenance of tissue water status. Simultaneous reduction in H2O2 and MDA production was also noted in the plants treated with these substances. Drought tolerance was sturdily associated with the greater tissue water potential, increased synthesis of metabolites and enhanced capacity of antioxidant system. Of all the chemicals, foliar spray with Spm was the most effective followed by BR. [source]


Effects of Nigella orientalis and N. segetalis fixed oils on blood biochemistry in rats

PHYTOTHERAPY RESEARCH, Issue 1 2006
G. Kökdil
Abstract Nigella orientalis and N. segetalis fixed oils were administered orally (1 mL/kg/day) to Wistar Kyoto rats for 4 weeks. The effects of the oils on biochemical parameters were compared with a control group that received distilled water under identical conditions. LDL-cholesterol level was decreased significantly in both oil groups while serum total cholesterol and VLDL-cholesterol were decreased significantly following administration of only N. orientalis fixed oil when compared with the control group. The HDL-cholesterol levels were increased significantly in both oil groups. N. orientalis fixed oil significantly reduced Aspartateaminotransferase (AST), Alkaline Phosphatase (ALP), bilirubin and urea levels in rats. There was an increase in the albumin, uric acid and mean corpuscular volume (MCV) concentrations, while the mean corpuscular hemoglobin concentration (MCHC) and RDW (red cell distribution width) levels decreased significantly. In N. segetalis fixed oil treated rats, the levels of ALP, Blood Urea Nitrogen (BUN), MCHC, RDW were decreased significantly, whereas a significant increase was found in albumin, fibrinogen, Hematocrit (HCT) and MCV levels. The effects of 4 weeks oral intake of N. orientalis and N. segetalis fixed oils on blood malondialdehyde (MDA) and total antioxidant status (TOS) were also investigated in rats. The study showed that the oils had no significant effect on MDA production. N. orientalis and N. segetalis fixed oils caused a significant increase in the total antioxidant status in rats. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Erythrocyte Susceptibility to Oxidative Stress in Chronic Renal Failure Patients Under Different Substitutive Treatments

ARTIFICIAL ORGANS, Issue 1 2005
Leonardo Lucchi
Abstract:, An increased oxidative stress is now considered one of the major risk factors in chronic renal failure (CRF) patients that may be exacerbated by dialysis. It has been postulated that this increased oxidative stress might cause an augmented red blood cell (RBC) membrane lipid peroxidation with the consequent alteration in membrane deformability. The aim of this study was to evaluate RBC susceptibility to an in vitro induced oxidative stress and RBC antioxidant potential in different groups of CRF patients undergoing different substitutive treatment modalities. Fifteen end-stage CRF patients were evaluated in conservative treatment, 23 hemodialysis (HD) patients, 15 continuous ambulatory peritoneal dialysis (CAPD) patients, 15 kidney transplanted patients, and 16 controls. Their RBCs were incubated with the oxidative stress-inducing agent tert-butylhydroperoxide both in the presence and in the absence of the catalase inhibitor sodium azide, and the level of malondialdehyde (MDA) (a product of lipid peroxidation), was measured at 0, 5, 10, 15, and 30 min of incubation. In addition, the RBC content of reduced glutathione (GSH) was measured by HPLC. As opposed to the controls, RBCs from end-stage CRF patients exhibited an increased sensitivity to oxidative stress induced in vitro, both in the absence and presence of a catalase inhibitor, as demonstrated by a significantly higher level of MDA production at all the incubation times (P < 0.05). Different substitutive treatments had different impacts on this phenomenon; CAPD and kidney transplantation were able to normalize this alteration while HD was not. GSH appeared to be related to the increase in RBC susceptibility to oxidative stress; its content being significantly elevated in end-stage CRF and HD patients as compared with CAPD and transplanted patients and controls (P < 0.05). No significant changes were observed in the RBC glutathione content during the HD session. The increase of GSH in RBCs of end-stage CRF and HD patients seems to indicate the existence of an adaptive mechanism under increased oxidative stress occurring in vivo. Unlike HD, the beneficial effect of CAPD on the anemia of dialysis patients might partly be due to a condition of lower oxidative stress that might in addition counterbalance the cardiovascular negative effects of dislipidemia ,of, CAPD, patients. [source]


Influence of Different Hemodialysis Membranes on Red Blood Cell Susceptibility to Oxidative Stress

ARTIFICIAL ORGANS, Issue 1 2000
Leonardo Lucchi
Abstract: Oxidative stress is crucial in red blood cell (RBC) damage induced by activated neutrophils in in vitro experiments. The aim of the study was to evaluate whether the bioincompatibility phenomena occurring during hemodialysis (HD) (where neutrophil activation with increased free radical production is well documented) may have detrimental effects on RBC. We evaluated RBC susceptibility to oxidative stress before and after HD in 15 patients using Cuprophan, cellulose triacetate, and polysulfone membrane. RBC were incubated with t-butyl hydroperoxide as an oxidizing agent both in the presence and in the absence of the catalase inhibitor sodium azide. The level of malonaldehyde (MDA), a product of lipid peroxidation, was measured at 0, 5, 10, 15, and 30 min of incubation. When Cuprophan membrane was used, the MDA production was significantly higher after HD, indicating an increased susceptibility to oxidative stress in comparison to pre-HD. The addition of sodium azide enhanced this phenomenon. Both cellulose triacetate and polysulfone membranes did not significantly influence RBC susceptibility to oxidative stress. Neither the level of RBC reduced glutathione nor the RBC glutathione redox ratio changed significantly during HD with any of the membranes used. The RBC susceptibility to oxidative stress was influenced in different ways according to the dialysis membrane used, being increased only when using the more bioincompatible membrane Cuprophan, where neutrophil activation with increased free radical production is well documented. The alterations found in this study might contribute to the reduced RBC longevity of HD patients where a bioincompatible membrane is used. [source]