Lymphoid Enhancer Factor (lymphoid + enhancer_factor)

Distribution by Scientific Domains


Selected Abstracts


Thymic epithelial cells provide Wnt signals to developing thymocytes

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2003
Judit Pongracz
Abstract Interactions with thymic stromal cells are known to be critical for the development of T,cells from progenitors entering the thymus, yet the molecular mechanisms of stromal cell function remain poorly understood. Accumulating evidence has highlighted the importance of ,-catenin-mediated activation of T,cell factor (TCF)/lymphoid enhancer factor (LEF) transcription during thymocyte development. As regulation of this signaling pathway is controlled by binding of soluble Wnt proteins to cell surface Frizzled (Fz) receptors, we studied components of Wnt/Fz-mediated signaling in thecontext of stromal cell regulation of thymocyte development. We show that mRNA for a variety of Wnt family members, notably Wnt-4, Wnt-7a and 7b, and Wnt-10a and 10b, are expressed by thymic epithelium rather then by thymocytes, while thymocytes demonstrate a developmentally regulated pattern of Fz receptor expression. Collectively these findings suggest (1) a functional role for Wnt-producing thymic epithelium in determining TCF/LEF-mediated transcriptional regulation in Fz-bearing thymocytes, and (2) a role for defined Wnt-Fz interactions at successive stages of thymocyte maturation. In support of this we show that separation of thymocytes from Wnt-producing epithelial cells and the thymic microenvironment, triggers ,-catenin phosphorylation and degradation in thymocytes. Thus, sustained exposure to Wnt in the context of an intact stromal microenvironment is necessary for stabilization of ,-catenin-mediated signaling in thymocytes. [source]


Lymphoid enhancer factor interacts with GATA-3 and controls its function in T helper type 2 cells

IMMUNOLOGY, Issue 3 2008
Mohammad B. Hossain
Summary GATA-3 is the master transcription factor for T helper 2 (Th2) cell differentiation and is critical for the expression of Th2 cytokines. Little is known, however, about the nature of the functional molecular complexes of GATA-3. We identified a high-mobility group (HMG)-box type transcription factor, lymphoid enhancer factor 1 (LEF-1), in the GATA-3 complex present in Th2 cells using a Flag-calmodulin-binding peptide (CBP)-tag based proteomics method. The interaction between GATA-3 and LEF-1 was confirmed by co-immunoprecipitation experiments using LEF-1-introduced T-cell lineage TG40 cells. The HMG-box domain of LEF-1 and two zinc finger domains of GATA-3 were found to be important for the physical association. The introduction of LEF-1 into developing Th2 cells resulted in the suppression of Th2 cytokine production. The suppression was significantly lower in the cells into which a HMG-box-deleted LEF-1 mutant was introduced. Moreover, LEF-1 inhibited the binding activity of GATA-3 to the interleukin (IL)-5 promoter. These results suggest that LEF-1 is involved in the GATA-3 complex, while also regulating the GATA-3 function, such as the induction of Th2 cytokine expression via the inhibition of the DNA-binding activity of GATA-3. [source]


Wnt signaling inside the nucleus

CANCER SCIENCE, Issue 4 2008
Miki Shitashige
Accumulation of the ,-catenin protein and transactivation of a certain set of T-cell factor (TCF)-4 target genes by accumulated ,-catenin have been considered crucial in colorectal carcinogenesis. In the present review, we summarize nuclear proteins that interact with, and regulate, the ,-catenin and TCF and lymphoid enhancer factor (LEF) transcriptional complexes. Our recent series of proteomic studies has also revealed that various classes of nuclear proteins participate in the ,-catenin,TCF-4 complex and modulate its transcriptional activity. Furthermore, the protein composition of the TCF-4-containing nuclear complex is not fixed, but is regulated dynamically by endogenous programs associated with intestinal epithelial cell differentiation and exogenous stimuli. Restoration of the loss-of-function mutation of the adenomatous polyposis coli (APC) gene in colorectal cancer cells does not seem to be a realistic approach with currently available medical technologies, and only signaling molecules downstream of the APC gene product can be considered as targets of pharmacological intervention. Nuclear proteins associated with the ,-catenin,TCF-4 complex may include feasible targets for molecular therapy against colorectal cancer. Recently, an inhibitor of the interaction between CREB-binding protein and ,-catenin was shown to efficiently shut down the transcriptional activity of TCF-4 and induce apoptosis of colorectal cancer cells. We also summarize current strategies in the development of drugs against Wnt signaling. (Cancer Sci 2008; 99: 631,637) [source]