Lupus Model (lupus + model)

Distribution by Scientific Domains


Selected Abstracts


Blockade of B-cell-activating factor suppresses lupus-like syndrome in autoimmune BXSB mice

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 6b 2010
Hanlu Ding
Abstract B-cell-activating factor (BAFF), a member of the tumour necrosis factor superfamily, plays a critical role in the maturation, homeostasis and function of B cells. In this study, we demonstrated the biological outcome of BAFF blockade in BXSB murine lupus model, using a soluble fusion protein consisting of human BAFF-R and human mutant IgG4 Fc. Mutation of Leu235 to Glu in IgG4 Fc eliminated antibody-dependent cell cytotoxicity (ADCC) and complement lysis activity, and generated a protein devoid of immune effector functions. Treatment of BXSB mice with BAFF-R-IgG4mut fusion protein for 5 weeks resulted in significant B-cell reduction in both the peripheral blood and spleen. Treated mice developed lower proteinuria, reduced glomerulonephritis and much delayed host death than untreated animals. Thus, BAFF blockade with BAFF-R-IgG4mut protein is an effective strategy to treat B-cell-mediated lupus-like pathology. Moreover, compared with other IgG isotypes with undesired effector functions, mutant IgG4 Fc should prove useful in constructing novel therapeutic reagents to block immune molecule signalling in various diseases. [source]


Prolonged effects of short-term anti-CD20 B cell depletion therapy in murine systemic lupus erythematosus

ARTHRITIS & RHEUMATISM, Issue 8 2010
Kai W. Bekar
Objective Although B cells are implicated in the pathogenesis of systemic lupus erythematosus, the role of B cell depletion (BCD) as a treatment is controversial, given the variable benefit in human disease. This study was undertaken to test the effects of BCD therapy in a murine lupus model to better understand the mechanisms, heterogeneity, and effects on disease outcomes. Methods (NZB × NZW)F1 female mice with varying degrees of disease severity were treated with an anti-mouse CD20 (anti-mCD20) antibody (IgG2a), BR3-Fc fusion protein (for BAFF blockade), or control anti-human CD20 monoclonal antibody (,10 mg/kg each). Tissue samples were harvested and analyzed by flow cytometry. The development and extent of nephritis were assessed by monitoring proteinuria (using a urine dipstick) and by immunohistochemical analysis of the kidneys. Serum immunoglobulin levels were measured by enzyme-linked immunosorbent assay. Results After a single injection of anti-mCD20, BCD was more efficient in the peripheral blood, lymph nodes, and spleen compared with the bone marrow and peritoneum of normal mice as well as younger mice with lupus. Since depletion of the marginal zone and peritoneal B cells was incomplete and variable, particularly in older mice with established nephritis, a strategy of sequential weekly dosing was subsequently used, which improved the extent of depletion. BAFF blockade further enhanced depletion in the spleen and lymph nodes. Early BCD therapy delayed disease onset, whereas BCD therapy in mice with advanced disease reduced the progression of nephritis. These effects were long-lasting, even after B cell reconstitution occurred, and were associated with a reduction in T cell activation but no significant change in autoantibody production. Conclusion The lasting benefit of a short course of BCD therapy in lupus-prone mice with an intact immune system and established disease highlights the validity of this treatment approach. [source]


Requirement of toll-like receptor 7 for pristane-induced production of autoantibodies and development of murine lupus nephritis,

ARTHRITIS & RHEUMATISM, Issue 4 2008
Emina Savarese
Objective The detection of high titers of antibodies against small nuclear ribonucleoproteins (snRNP) is a diagnostic finding in patients in whom systemic lupus erythematosus (SLE) is suspected. Endogenous RNA molecules within snRNP trigger Toll-like receptor 7 (TLR-7) activation in B cells and dendritic cells, leading to anti-snRNP antibody production, which is associated with the development of immune complex nephritis in SLE. The purpose of this study was to investigate the role of TLR-7 in anti-snRNP antibody production and renal disease in SLE induced by an exogenous factor in the absence of genetic predisposition, using the pristane-induced murine lupus model. Methods Serum autoantibodies, IgG isotypes, and cytokine levels in pristane-treated wild-type and TLR-7,deficient mice were analyzed by enzyme-linked immunosorbent assay. Histopathologic changes in mouse kidneys were determined by light immunofluorescence microscopy. Cell subsets in splenocytes and peritoneal lavage cells from the mice were examined by flow cytometry. Results We found that anti-snRNP antibody production induced by pristane treatment was entirely dependent on the expression of TLR-7, whereas anti,double-stranded DNA antibody production was not affected by a lack of TLR-7. Impaired anti-snRNP antibody production in TLR-7,deficient mice was paralleled by lower levels of glomerular IgG and complement deposits, as well as less severe glomerulonephritis. Conclusion TLR-7 is specifically required for the production of RNA-reactive autoantibodies and the development of glomerulonephritis in pristane-induced murine lupus, a model of environmentally triggered SLE in the absence of genetic susceptibility to autoimmunity. Specific interference with TLR-7 activation by endogenous TLR-7 ligands may therefore be a promising novel strategy for the treatment of SLE. [source]


Deficiency of the type I interferon receptor protects mice from experimental lupus,

ARTHRITIS & RHEUMATISM, Issue 11 2007
Dina C. Nacionales
Objective Systemic lupus erythematosus (SLE) is diagnosed according to a spectrum of clinical manifestations and autoantibodies associated with abnormal expression of type I interferon (IFN-I),stimulated genes (ISGs). The role of IFN-I in the pathogenesis of SLE remains uncertain, partly due to the lack of suitable animal models. The objective of this study was to examine the role of IFN-I signaling in the pathogenesis of murine lupus induced by 2,6,10,14-tetramethylpentadecane (TMPD). Methods IFN-I receptor,deficient (IFNAR,/,) 129Sv mice and wild-type (WT) 129Sv control mice were treated intraperitoneally with TMPD. The expression of ISGs was measured by real-time polymerase chain reaction. Autoantibody production was evaluated by immunofluorescence and enzyme-linked immunosorbent assay. Proteinuria and renal glomerular cellularity were measured and renal immune complexes were examined by immunofluorescence. Results Increased ISG expression was observed in the peripheral blood of TMPD-treated WT mice, but not in the peripheral blood of TMPD-treated IFNAR,/, mice. TMPD did not induce lupus-specific autoantibodies (anti-RNP, anti-Sm, anti,double-stranded DNA) in IFNAR,/, mice, whereas 129Sv controls developed these specificities. Although glomerular immune complexes were present in IFNAR,/, mice, proteinuria and glomerular hypercellularity did not develop, whereas these features of glomerulonephritis were found in the TMPD-treated WT controls. The clinical and serologic manifestations observed in TMPD-treated mice were strongly dependent on IFNAR signaling, which is consistent with the association of increased expression of ISGs with lupus-specific autoantibodies and nephritis in humans. Conclusion Similar to its proposed role in human SLE, signaling via the IFNAR is central to the pathogenesis of autoantibodies and glomerulonephritis in TMPD-induced lupus. This lupus model is the first animal model shown to recapitulate the "interferon signature" in peripheral blood. [source]