Lunar Phase (lunar + phase)

Distribution by Scientific Domains


Selected Abstracts


Influence of seasonal, diel, lunar, and other environmental factors on upstream fish passage in the Igarapava Fish Ladder, Brazil

ECOLOGY OF FRESHWATER FISH, Issue 3 2009
P. M. Bizzotto
Abstract,,, Upstream fish passage was evaluated during 12 months in the vertical-slot Igarapava Fish Ladder constructed around Igarapava Dam, in the heavily dammed Grande River, Southeast Brazil. A video monitoring system was used to observe 61,621 fish that passed the ladder, of which 93.5% were identified to 15 taxa. Among the migratory species, the most abundant were Pimelodus maculatus (33.6% of all fish), Leporinus octofasciatus (31.4%), Leporinus friderici (4.5%), and Prochilodus lineatus (3.1%). Seven taxa were classified as nonmigratory, and of these taxa, the small Bryconamericus stramineus was the most abundant (12.7%) of all fishes. Passage of the ,nonmigratory' taxa upstream in the ladder shows they are migratory in this system and have a strong behavioural drive to move to upstream habitat. Passage of most taxa had a strong seasonal pattern. While some species passed primarily during the day, others showed a distinct nocturnal pattern. Lunar phase and water temperature also strongly affected passage of some taxa. Rainfall and dam discharge had a small or null influence on most taxa; perhaps due to the fairly small catchment area of the reservoir and the highly regulated discharge at Igarapava Dam. [source]


Lunar cycles and reproductive activity in reef fishes with particular attention to rabbitfishes

FISH AND FISHERIES, Issue 4 2004
Akihiro Takemura
Abstract Cues from the moon influence synchrony in growth, feeding, migration, behaviour and reproduction of many reef fishes. Compared with comprehensive studies on the annual and daily activities of fish, few physiological studies have paid attention to the importance of lunar cues in reproductive activities. We review mutual and interesting relationships between fish reproduction and environmental changes induced by the moon, with particular emphasis on the reproductive activity of the rabbitfishes (Siganidae). Rabbitfish species exhibit, in nature, a definitive reproductive season, which differs among the tropical areas. During the reproductive season, synchronous spawning of rabbitfish is associated with a particular lunar phase. The lunar phase used by the respective species is similar in different regions on the earth. Histological observations revealed that gonads develop synchronously towards a peak around the spawning lunar phase, after which the gonads return to spent condition. Concomitant with gonadal development, sex steroid hormones were produced under the influence of gonadotropin (GtH). Injections of human chronic gonadotropin (hCG) to the fish that are undergoing active spermatogenesis accelerated testicular maturation. These results suggest that hormonal response in maturing the gonads in rabbitfish is under the regulation of GtH, and that pituitary secretion of GtH according to the lunar cycle accounts for the lunar rhythm in gonadal development. We speculate that the cues from the moon can be recognized by the higher parts of the hypothalamus,pituitary,gonadal axis. Possible relationships between exogenous environmental factors and the lunar-reproductive rhythm are also discussed. [source]


Plasticity in vertical behaviour of migrating juvenile southern bluefin tuna (Thunnus maccoyii) in relation to oceanography of the south Indian Ocean

FISHERIES OCEANOGRAPHY, Issue 4 2009
SOPHIE BESTLEY
Abstract Electronic tagging provides unprecedented information on the habitat use and behaviour of highly migratory marine predators, but few analyses have developed quantitative links between animal behaviour and their oceanographic context. In this paper we use archival tag data from juvenile southern bluefin tuna (Thunnus maccoyii, SBT) to (i) develop a novel approach characterising the oceanographic habitats used throughout an annual migration cycle on the basis of water column structure (i.e., temperature-at-depth data from tags), and (ii) model how the vertical behaviour of SBT altered in relation to habitat type and other factors. Using this approach, we identified eight habitat types occupied by juvenile SBT between the southern margin of the subtropical gyre and the northern edge of the Subantarctic Front in the south Indian Ocean. Although a high degree of variability was evident both within and between fish, mixed-effect models identified consistent behavioural responses to habitat, lunar phase, migration status and diel period. Our results indicate SBT do not act to maintain preferred depth or temperature ranges, but rather show highly plastic behaviours in response to changes in their environment. This plasticity is discussed in terms of the potential proximate causes (physiological, ecological) and with reference to the challenges posed for habitat-based standardisation of fishery data used in stock assessments. [source]


Temporal variability in fish larval supply to Malindi Marine Park, coastal Kenya

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue S1 2009
Boaz Kaunda-Arara
Abstract 1.Larval supply to reef sites influences adult population structure, reef connectivity and conservation potential of marine reserves, but few studies have examined this topic in the Western Indian Ocean (WIO). 2.Fish larval supply to Malindi Marine Park in Kenya was studied using light-traps for a period extending from March 2005 to June 2006. The traps caught pre-settlement fish larvae at two sites spread across the park. Catch rates (number trap,1night,1) were used to represent larval abundance and to test the influence of seasonality and habitat characteristics on larval abundance in the park. 3.Thirty-three species of reef fish larvae in 15 families were sampled. Larval supply to the park was more diverse during the north-east monsoon season (30 species) than in the south-east monsoon season (15 species), with inter-annual variability in abundance. Higher catch rates of larvae occurred in the north-east monsoon month of March in both 2005 and 2006 and the inter-monsoon month of September 2005. 4.Family-specific temporal variation in larval abundance showed dominance of the families Apogonidae and Caesionidae in the park, with higher abundance during the north-east monsoon months. A few families (e.g. Canthigasteridae) showed dominance during the south-east monsoon season. Regression and rank Spearman correlation analyses indicated positive correlation of chlorophyll-a with larval supply while water depth had significant negative correlation with abundance of the Apogonidae and Caesionidae. 5.On a short-term temporal scale larval abundance in the park was highly correlated with the new moon lunar phase more than the full moon. However, on a long-term scale (16 months) larval supply to the park was significant only over a 2-month period and was correlated with environmental productivity more than ambient temperature. These results are useful in understanding the role of larval supply in structuring adult fish populations and the factors that force larval flux at reef sites. Copyright © 2009 John Wiley & Sons, Ltd. [source]